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Abstract 

Objective:  

To assess the effect of gonadotropin-releasing 
hormone analogue (GnRHa) on the preservation 
of ovarian function against  cyclophosphamide-
induced gonadal toxicity.  

Materials and Methods:  

In a controlled, experimental study, 64 female 
mice were divided into four groups: control (C), 
triptorelin acetate (T), cyclophosphamide (CY), 
and triptorelin plus cyclophosphamide (T+CY) 
groups. Mice in the group (T) were 
subcutaneously injected with GnRHa (triptorelin 
acetate) in a dose of 0.5 mg/kg daily for 21 days.  
In contrast, mice in the (CY) group and (T+CY) 
group were injected intraperitoneally with 75 
mg/kg of CY on day 15. After 21 days, half of the 
mice in each group were sacrificed, and their 
ovaries were removed. The rest of the mice in 
each group were left without any intervention for 
an additional 21 days, and the same procedures 
were repeated to assess the ovarian follicles. 

 

Results:  

There was significant depletion of ovarian follicles 
in the CY group compared to the control group 
(p<0.05). There were significant decreases in the 
number of secondary and antral follicles at late 
stage as compared to early stage in the CY group 
(p<0.05). There was also a significant increase in 
the number of primordial and primary follicles in 
the T+CY group as compared with the CY group 
early post-treatment, while the increase was 
significant in all follicles after 42 days (p<0.05). 

Conclusion:   

Cyclophosphamide destroys primordial and 
primary follicles at an early stage while damage 
in secondary and antral follicles was prominent 
after 42 days. Triptorelin acetate reduces the 
toxic effect of CY; it has early and late protective 
effects and preserves ovarian function in mice.   
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Introduction 

In recent years, cancer treatments have 
greatly improved, leading to a significant 
increase in the survival of patients of 
reproductive age. However, the use of 
chemotherapies has been concomitant 
with gonadotoxic effect and loss of 
ovarian function.1 Young women with 
cancer should be aware of the potential 
effects of chemotherapy on gonads and 
counseled to preserve fertility and 
ovarian function.2  

Cyclophosphamide (CY) is an alkylating 
cytotoxic agent that is used widely as an 
anti-neoplastic and immunosuppressive 
agent and is proved to lead to impaired 
fertility through the destruction of ovarian 
follicles and development of premature 
ovarian failure.3 Non-cycling cells are 
less susceptible to fatal damage from 
cytotoxic agents, so hormonal 
suppression may participate in ovarian 
protection.4  

Several modalities have been suggested 
to preserve ovarian function following 
chemotherapy. These include prior in-
vitro fertilization cycles with embryo 
cryopreservation, ovarian tissue 
cryopreservation and less-costly, more 
convenient pre-treatment with 
gonadotropin-releasing hormone 
analogues (GnRHa).5 However, although 
GnRHa have been utilized for at least two 
decades to preserve ovarian function 
during the administration of cytotoxic 
drugs in women with cancer, their effect 
is still debatable.6-8 A recent meta-
analysis observed a benefit from GnRH 

analogues in breast cancer,9 although 
clinical evidence remains uncertain for 
other types of cancers.7,10,11  

To this end, animal studies have been 
used to verify the value of GnRHa in 
protecting against chemotherapy-
induced ovarian compromise. Several 
studies have proven efficacy.12, 13 
However, others failed to reveal an 
improvement in outcomes.14,15 The 
mechanisms of fertility preservation by 
GnRH analogues are not clearly 
understood. Several hypotheses have 
been postulated, including interruption of 
FSH secretion, stimulation of intra-
ovarian antiapoptotic molecules such as 
sphingosine-I-phosphate, decrease in 
utero-ovarian perfusion, activation of 
GnRH receptors or protection of 
undifferentiated germ-line stem cells.8  

Most previous studies show the positive 
effect of GnRH analogues on the 
resumption of menstruation and in 
patients with lymphoma.11,16,17 However, 
these assumptions need to be re-
evaluated due to marked methodological 
variations among studies of this sort. For 
example, return to fertility has been only 
short-term for several patients included in 
such studies. In addition, long-term 
analyses fail to show a clear benefit from 
GnRH agonists use depending on the 
type of cancer treated, type of 
chemotherapeutic agent used, and the 
demographic characteristics of the 
subjects involved in the studies. This 
inconsistency opened a door for us to 
use an adult mouse model to re-evaluate 
both the early and late effects of GnRHa 
on the preservation of ovarian function in 
the presence of cyclophosphamide-
induced gonadal toxicity. 
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Materials and methods  

Sixty-four female mice (6 weeks old) 
were used throughout the study. They 
were obtained from the Egyptian 
Organization for Biological Products and 
Vaccines (Vacsera, Egypt). All 
procedures were in accordance with their 
Guiding Principles for the Care of 
Animals.12 The institutional ethical review 
board approved the study protocol.  

All mice were accommodated individually 
for a 2-week acclimatization period. Mice 
were served ad libitum with standard 
laboratory pellets and tap water. A 
diurnal cycle of 12 hours of light and 12-
hr dark cycle was maintained. Room 
temperature was set at 23±2◦C with a 
relative humidity of 45-55%. 

Mice were randomly divided equally into 
four groups: Each animal was assigned a 
unique random identification number. 
Then new numbers were drawn to 
randomly assign mice in a logical fashion 
to different groups.   

• Group (1): Control group (C). 
Needs to note procedure for age-
matching.  

• Group (2): Triptorelin acetate (T) 
group: mice were injected daily for 
21 days with 0.5 mg/kg of 
subcutaneous triptorelin acetate 
(Decapeptyl®, Ferring 
Pharmaceuticals, Germany).18  

• Group (3): Cyclophosphamide 
(CY) treated group: mice were 
injected intraperitoneally once on 
day 15 with cyclophosphamide 
(Endoxan®, Baxter, Oncology, 
GmbH) at a dose of 75 mg/kg.19  

• Group (4): Triptorelin acetate plus 
CY treated (T+CY) group: mice 
were injected with 0.5 mg/kg 
triptorelin acetate subcutaneously 
for 21 days. The animals were 
further injected intraperitoneally 
once on day 15 with CY at a dose 
of 75 mg/kg.18  

On the 21st day, half of the mice in each 
group (n=8), including the age-matched 
controls, were randomly sacrificed. Their 
ovaries were removed immediately and 
processed for light microscopic 
examination. In all cases, including the 
age-matched controls, the mice were 
killed with an overdose of ether. Both 
ovaries were entirely removed from each 
mouse for histological processing.   

The rest of the mice in each group were 
left without any intervention for an 
additional 21 days and the same 
procedures were repeated to assess 
ovarian follicles. By the end of the 
experiments, four mice were dead; one 
each in the C and T+CY groups and two 
in the CY group. This number was an 
acceptable loss for the duration of the 
experiment and was anticipated for the 
mice receiving Cyclophosphamide. 
Histological examination showed no 
significant difference between the 
number of follicles in rats that died and 
those that survived until sacrifice. 

After excision, the ovaries were fixed in a 
4% formalin solution overnight and 
embedded in paraffin sections. 
Hematoxylin and eosin staining 
techniques were used for five micrometer 
serial sections, which were cut with a 
microtome. The primordial follicle (PMF) 
number was counted in every fifth section 
and then multiplied by five. The same 
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examiner was used for each section 
counted to diminish inter-observer error. 
The same procedure was used for 
primary, secondary, and antral follicles. 

Morphometric Study 

All images were captured using a 
calibrated standard digital microscope 
camera (Tucsen® ISH1000) with an 
Olympus® CX21 microscope, (Universal 
Infinity System, Olympus®, Japan). The 
numbers of primordial, primary, 
secondary and antral follicles were 
counted. Only the follicles that contained 

an oocyte were counted. A primordial 
follicle contains a partial or complete 
layer of flattened granulosa cells 
encircling the oocyte. In the primary 
follicle, the oocyte is surrounded by a 
single layer of cuboidal granulosa cells, 
and the secondary follicle includes 
multiple layers of cuboidal granulosa 
cells encircling the oocyte, whereas an 
antral follicle contains a single large 
antral space adjacent to the oocyte, as 
described by Myers et al.20  

 

 

Figure 1: Flowchart of mouse allocations into groups 

 

 

 

 

 

 

Statistical analysis  

Data were analyzed using SPSS version 
21 (SPSS Inc., Chicago, IL, USA). 
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Quantitative data were presented as 
mean ± SD. The ANOVA test was used 
to compare the four groups, while an 
independent t-test was used to compare 
subgroups. For example, subgroups in 
the CY group were compared at 21 and 
at 42 days. A p-value<0.05 was 
considered statistically significant.  

 

Results  

Sixty-four female mice were partitioned 
into four groups at random. By the end 
treatment course, each group was 
subdivided equally. Half of them were 
sacrificed,  and the rest continued for 42 
days (Figure 1). 

Examination of the ovarian tissue in the 
control group showed that the cortex was 
occupied by follicles in various stages of 
development; classified into primordial, 
primary, secondary, and antral follicles 
(Figures 2a and 2b). 

Figure 2a, 2b: A photomicrograph of a section in the ovary of a control mouse showing 
the cortex occupied by follicles (F) in various stages of development (PMFs; primordial 

follicle (Arrowheads), Primary follicles (Black arrows), SF; secondary follicle, NBV; 
normal blood vessels).   

In the triptorelin acetate group, 
histological examination revealed normal 
ovarian tissue showing the cortex 
containing functional structures of the 

ovary (follicles) which showed well-
developed follicles after 42 days (Figures 
3a and 3b).   
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Figure 3a, 3b: A photomicrograph of a section in the ovary of a triptorelin group 
showing the cortex occupied by follicles in various stages of development 
(Primary follicles (Black arrows), SF; secondary follicle, NBV normal blood 
vessels) early (a) and after 42 days, which shows well-developed follicles (b). 

Figure 4a, 4b: A photomicrograph of a section in the ovary of a 
cyclophosphamide-treated mouse early and after 42 days showing collapsed 
follicles (Black arrows) with marked reduction of primordial (PMFs), primary, and 
secondary follicles at the surface of the ovary, and many congested blood 
vessels (Red arrows) and focal areas of necrosis (Blue arrow). 
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Examination of the ovarian tissue in the 
CY group revealed destruction of the 
ovarian structure, collapsed follicles, 
marked reduction in the number of 
primordial and primary follicles and 
congested blood vessels in acute stage 
(Figure 4a), extensive damage to all 
follicles was obvious with focal areas of 

necrosis after 42 days (Figure 4b). 

In the (T+CY) group, the primordial, 
primary, secondary and antral follicles 
were preserved with decreased 
congestion early and after 42 days 
(Figures 5a and 5b). 

 

Figure 5a, 5b: A photomicrograph of a section in the ovary of triptorelin plus 
cyclophosphamide treated group early and after 42 days showing restoration of 
follicles in various stages of development, with significant reduction in the 
number of congested blood vessels and restoration of normal vasculature (PMFs; 
primordial follicles, Primary follicles (Black arrows), SF; secondary follicle, AF; 
antral follicle, NBV; normal blood vessels). 

The two groups studied were compared 
with a focus on the number of follicles at 
two points in time, post-treatment. 
Marked destruction of the ovarian 
structure and a significant reduction of 
primordial, primary, secondary and antral 
follicles were observed in the CY group 
as compared with the control group, 
confirming the gonadotoxic effect of 
cyclophosphamide (p<0.05). There was 
a significant decrease in primordial and 

primary follicular destruction in the T+CY 
group compared with CY group early 
post-treatment (190.8±21.5 and 70.3±8.8 
vs. 82.4±12.8 and 35.8±6.1, 
respectively), while the decrease was 
significant in all follicles after 42 days 
(p<0.05).  

This two-pronged comparison showed 
that there was a significant reduction in 
secondary and antral follicle numbers 
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after 42 days compared to early 
evaluation of the CY group (12.0±5.2 and 
6.4±2.6 vs. 24.6±6.5 and 10.8±4.2, 
respectively) suggesting that the toxic 
effect of CY is rapid in the primordial and 
primary follicles while growing follicles 
were not affected as quickly (p<0.05) 
(Table1). 

Discussion 

In this research, we studied the 
gonadotoxic effect of CY on the ovaries 
of mature mice. We did this through the 
evaluation of ovarian follicles early and 
late in the post-treatment course. We 
also studied the possible protective effect 
of triptorelin acetate on CY-exposed 
mouse ovaries through the examination 
of the ovaries of mice treated with both 
CY and triptorelin.  

Cyclophosphamide is a 
chemotherapeutic and 
immunosuppressive agent that has long 
been approved to treat different forms of 
cancer, including lymphomas, multiple 
myelomas, leukemias and breast 
cancer.3 It is similar to the alkylating 
agent and nitrogen mustard group of 
medications and exerts its action through 
its metabolite phosphoramide mustard, 
which forms DNA strand crosslinks at the 
Guanine N-7 position.1  

Cyclophosphamide was shown to have a 
destructive effect on the ovaries. As an 
alkylating agent, it is non-cycle specific, 
so resting follicles may be affected.21 A 
study by Oktem and Oktay in 2007 has 
demonstrated marked atrophy of 
primordial follicles and oocytes following 
CY therapy.22 This atrophy was shown to 
be more obvious in primordial follicles 
than in growing ones.23 The mechanism 

of destruction is believed to be through 
an apoptotic pathway.24 

This study has shown a destructive effect 
of CY on ovarian follicles at two different 
time points. Moreover, growing follicles 
were shown to be more affected after 42 
days denoting a continuous destructive 
process. Possible explanations that 
could explain the late growing follicle 
damage include CY-induced activation of 
the PI3K pathway, leading to a triggering 
of follicle activation,25,26 CY-induced 
blood vessel injury and focal ovarian 
cortical fibrosis.27 

Our results showed both early and late 
protective effects of the GnRHa triptorelin 
acetate against CY induced follicular 
damage. Follicles at all stages of 
maturation appeared to be significantly 
higher in number in mice administered 
triptorelin acetate and CY than in those 
treated with CY alone. The effect was 
evident both at the early and the late 
stages of examination. Our results 
agreed with previous animal studies 
confirming the protective effect of GnRHa 
against chemotherapy-induced gonadal 
damage in mice28 and female rats.29 On 
the other hand; our results disagreed with 
others who failed to demonstrate any 
ovarian protection from the 
administration of GnRHa during 
chemotherapy.15  
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Table 1: Distribution of the ovarian follicles among the studied groups at two different time points. 

Groups Control Triptorelin (T) Cyclophosphamide (CY) T+ CY 
 Early At 42 days Early At 42 days Early At 42 days Early At 42 days 
Primordial follicles 280.6±15.3 272.8±22.4 231.8±20.6 240.2±17.6 82.4±12.8* 75.9±10.2* 190.8±21.5# 175.3±18.6# 
Primary follicles 110.2±18.2 98.6±15.4 102.6±22.1 114.3±19.6 35.8±6.1* 28.4±7.5* 70.3±8.8# 63.6±10.9# 
Secondary follicles 48.8±12.4 55.3±14.1 25.3±7.7 40.2±8.5 24.6±6.5* 12.0±5.2*$ 28.9±7.1 21.4±6.4# 

Antral follicles 28.4±6.9 31.2±7.6 14.3±5.4 26.5±6.1 10.8±4.2* 6.4±2.6*$ 12.8±5.1 14.3±6.6# 
 
*#$Statistically significant difference at p <0.05               
*CY subgroups vs. control subgroups  
#T+CY subgroups vs. CY subgroups                          
$CY subgroup in early stage vs. CY subgroup after 42 days  
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In humans, prospective randomized trials 
have also demonstrated controversial 
data.7,11,30-32 In human studies, the 
prospective trials evaluating the 
efficiency of GnRHa in ovarian protection 
against chemotherapy were flawed by 
methodological problems including a 
small study sample size, a short follow-
up period and a lack of randomization.17 
While the majority of animal studies 
likewise evaluated only the short-term 
effects of GnRHa, a strength in our study 
was our evaluation of both the long- and 
short-term effects of the GnRHa.    

Recently, the Prevention of Early 
Menopause Study concluded that the 
use of GnRH agonists during 
chemotherapy protected ovarian function 
in patients with breast cancer through 
two years of follow up.6 An updated 
analysis of the PROMISE-GIM6 trial 
assessing the 5-year cumulative 
occurrence of menstrual resumption also 
confirmed the benefit of GnRHa 
administration.9 On the other hand, a 
long-term study by Demeestere and her 
colleagues (2016) failed to confirm the 
beneficial effect of GnRHa in preventing 
chemotherapy-induced premature 
ovarian failure in lymphoma through five 
years of follow up.17  

Several mechanisms explaining the 
protective role of GnRHa against 
chemotherapy have been mentioned, 
including suppression of gonadotrophin 
levels in the ovary as a direct effect of 
GnRHa. According to this explanation, 
GnRHa preserves only growing follicles 
since GnRHa receptors in humans are 
found only in preovulatory follicles and 
corpus luteum.33 Additionally, GnRHa 
induces a decline in ovarian blood flow, 
which subsequently decreases the dose 
of chemotherapy that reaches the 

ovaries, therefore limiting ovarian 
damage. This effect is still controversial 
as some studies show a decline in 
ovarian blood flow after the 
administration of GnRHa in rats,34 while 
other studies, which measure blood flow 
of the ovarian stroma using three-
dimensional power Doppler ultrasound, 
show a lack of change in blood flow.35 
Finally, GnRHa agonists may up-
regulate extragonadal anti-apoptotic 
molecules such as sphingosine-1-
phosphate (S1P).  

Limitations of this study include that it 
does not assess anti-mullerian 
hormones, that it focuses on the 
histological examination of ovarian tissue 
and that it provides long-term evaluation 
mainly of primordial follicles after 
treatment to reflect the actual ovarian 
reserve and its fertility potential.  

Conclusion  

This study follows both late and early 
phase ovarian damage in mice after 
exposure to cyclophosphamide. The 
effects were considered for both resting 
and growing follicles. Results found that 
triptorelin acetate reduced the toxic effect 
of CY and that it had both early and late 
protective effects. GnRHa are simple and 
effective drugs.  Therefore, they could be 
suitable for fertility preservation during 
chemotherapy. Long and large clinical 
trials, preferably randomized controlled 
trials, are required to confirm these 
findings.   
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