Conference Proceeding

Classification of SD-OCT Volumes with LBP: Application to DME Detection

Authors
  • Guillaume Lemaître (Universitat de Girona)
  • Mojdeh Rastgoo (Universitat de Girona)
  • Joan Massich (Univ. Bourgogne Franche-Comté)
  • Shrinivasan Sankar (Univ. Bourgogne Franche-Comté)
  • Fabrice Mériaudeau (Univ. Bourgogne Franche-Comté)
  • Désiré Sidibé (Univ. Bourgogne Franche-Comté)

Abstract

This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Our method is based on Local Binary Patterns (LBP) features to describe the texture of Optical Coherence Tomography (OCT) images and we compare different LBP features extraction approaches to compute a single signature for the whole OCT volume. Experimental results with two datasets of respectively 32 and 30 OCT volumes show that regardless of using low or high level representations, features derived from LBP texture have highly discriminative power. Moreover, the experiments show that the proposed method achieves better classification performances than other recent published works.

Keywords: Diabetic Macular Edema, Optical Coherence Tomography, DME, OCT, LBP.

How to Cite:

Lemaître, G. & Rastgoo, M. & Massich, J. & Sankar, S. & Mériaudeau, F. & Sidibé, D., (2015) “Classification of SD-OCT Volumes with LBP: Application to DME Detection”, Proceedings of the Ophthalmic Medical Image Analysis International Workshop 2(2015), 9-16. doi: https://doi.org/10.17077/omia.1021

Rights: Copyright © 2015 Guillaume Lemaître, Mojdeh Rastgoo, Joan Massich, Shrinivasan Sankar, Fabrice Mériaudeau, and Désiré Sidibé

Downloads:
Download pdf
View PDF

397 Views

57 Downloads

Published on
09 Oct 2015
Peer Reviewed