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Abstract. Age-related macular degeneration (AMD) is a leading cause
of blindness in developed countries. The presence of drusen is the hall-
mark of early/intermediate AMD, and their sudden regression is strongly
associated with the onset of late AMD. In this work we propose a pre-
dictive model of drusen regression using optical coherence tomography
(OCT) based features. First, a series of automated image analysis steps
are applied to segment and characterize individual drusen and their de-
velopment. Second, from a set of quantitative features, a random forest
classi�er is employed to predict the occurrence of individual drusen re-
gression within the following 12 months. The predictive model is trained
and evaluated on a longitudinal OCT dataset of 44 eyes from 26 pa-
tients using leave-one-patient-out cross-validation. The model achieved
an area under the ROC curve of 0.81, with a sensitivity of 0.74 and a
speci�city of 0.73. The presence of hyperre�ective foci and mean drusen
signal intensity were found to be the two most important features for the
prediction. This preliminary study shows that predicting drusen regres-
sion is feasible and is a promising step toward identi�cation of imaging
biomarkers of incoming regression.

1 Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible
blindness in the elderly population in the developed world. Over time the disease
relentlessly progresses toward late AMD, which appears in two forms: atrophic
and neovascular AMD. The pathogenic mechanisms of AMD are still unclear
and currently there is an e�ective treatment available only for the less common,
neovascular form.

The introduction of optical coherence tomography (OCT) had a profound
impact on the assessment, early detection, and monitoring of AMD progression
by facilitating phenotyping of retina and its layers in �ne detail, with microm-
eter resolution. Thus, to expedite the search for therapies which halt or reverse
early/intermediate AMD it is essential to be able to identify pathomorphological
changes and quantitatively evaluate AMD progression using adequate biomark-
ers accessible by OCT imaging.

A clinical hallmark and usually the �rst clinical �nding of early AMD is the
presence of drusen, deposits of cellular waste products that begin to accumulate
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(a) T0 (b) Tregression − 3 months (c) Tregression

Fig. 1: Example of a drusen regression time course. (a) B-scan at baseline visit
T0, (b) last visit before the regression, and (c) �rst visit after the regression
Tregression. Vertical lines (yellow) denote the same anatomical location.

between the retinal pigment epithelium (RPE) and the Bruch's membrane (BM).
Drusen anatomic changes were found to correlate well with disease progression,
hence drusen growth has often been suggested as a promising candidate for a
surrogate biomarker of nonexudative AMD in clinical trials [1]. A drusen change
of particular clinical interest is the drusen regression. It is a naturally occurring
phenomenon, where drusen spontaneously dramatically decrease or completely
disappear (Fig. 1). In many cases late AMD develops precisely at the location
where the drusen regressed [2�4].

Early work on quantitative drusen analysis focused on drusen segmentation
from OCT images as the �rst step. Most approaches focused on obtaining drusen
by segmenting the surrounding surfaces denoting the RPE layer and the BM [5�
8]. Those methods generally work well except for possible undersegmentation of
very small or very large drusen. The subsequent steps consisted of quantifying
and characterizing the drusen load in longitudinal studies for the purpose of esti-
mating the risk of AMD progression [2, 9, 10]. Nevertheless, there is still a lack of
sensitive and speci�c structural biomarkers predictive of late AMD at the indi-
vidual patient level. Understanding the phenomenon of drusen regression evolved
with studies observing natural history of AMD progression. In [2], the natural
history is characterized with total drusen volume and area, but the regression
could not be successfully predicted. In [3], the presence of hyperre�ective foci
(HRF) overlying drusen, and a heterogeneous internal re�ectivity of these lesions
were found to be related with the local atrophy onset in the ensuing months.

In this work, we propose a machine learning approach to predict whether
individual druse will experience regression in the near future, i.e. the following
12 months. We utilize a novel OCT-based characterization of the outer retina
using both the shape and the local appearance of its layered structure as well as
their longitudinal development. The prediction method is evaluated using leave-
one-patient-out cross-validation on a longitudinal dataset of OCT images of 44
eyes from 26 patients with early/intermediate AMD.
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Fig. 2: Example of outer retina segmentation. Four surfaces are segmented (yel-
low) denoting three layers (blue).

2 Methods

The proposed methodology consists of the following processing pipeline. First, on
OCT images we perform a layer segmentation of the outer retina with a speci�c
focus on obtaining accurate drusen segmentation. Second, HRF are segmented
by voxel classi�cation of the outer retina. Subsequently, the longitudinal OCT
scans of each eye are put into spatial correspondence by registering them to
their baseline scan. Then, the footprints of individual drusen are identi�ed from
the baseline scan. Finally, features characterizing the shape, appearance at the
baseline and their development at the follow-up visit are computed for each
druse and are used to train a non-linear classi�er to predict the occurrence of
its regression within the following time-frame of 12 months.

2.1 Outer Retinal Layer Segmentation

The outer retinal layer segmentation (Fig. 2) is based on the Iowa Reference Al-
gorithms [11, 12], which we applied to obtain the segmentation of the outer nu-
clear layer (ONL). Then, we use the same graph-search segmentation approach
with modi�ed smoothness constraints, which de�ne allowed change in surface
height when moving between neighboring surface points. The lower RPE surface
is obtained as a surface positioned on the bright to dark intensity gradient, be-
low the ONL, with a weak smoothness constraint to allow for the deformations
introduced by drusen. This de�nes the layer consisting of the outer retinal hy-
perre�ective bands (ORB). Subsequently, to account for drusen, from the same
cost function, the BM surface is obtained as a very smooth surface with strong
smoothness constraints, analogous to the approach taken in [8].

2.2 Hyperre�ective Foci Segmentation

To segment HRF (Fig. 3) a voxel classi�cation based on unsupervised represen-
tation and auto-context is applied, analogous to the approach proposed in [13].
From a set of 2D image patches at various scales (ranging from 2× 2 to 40× 40
px) features are created using principal component analysis, where the �rst 15
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Fig. 3: Example of hyperre�ective foci segmentation (in red).

(a) (b) (c)

Fig. 4: Individual drusen segmentation. (a) Drusen thickness map. (b) Segmen-
tation and labeling of individual drusen. (c) B-scan with con�uent drusen seg-
mented into individual drusen (e.g. yellow and purple).

eigenvectors are used as convolution kernels on the intensity scans. Then, from
the convolutional features, a random forest classi�er is trained to provide for
each pixel of a B-scan the probability that it belongs to HRF. The results are
further re�ned with auto-context, an iterative approach that includes spatial
context extracted from previous classi�cations to re�ne the prediction result of
the next iteration [14]. A set of 150 B-scans from 40 OCT volumes where HRF
was manually labeled was used as the training set, which was completely disjoint
from the dataset used for the drusen regression prediction.

2.3 Individual Drusen Segmentation

From the segmentation of the outer retina (Subsection 2.1), thickness maps
of the drusen layer are computed (Fig. 5). Local maximums of the thickness
maps are taken to be the centers of individual drusen and are denoted as the
foreground markers. All areas with the drusen thickness below an empirically
de�ned threshold of 8 µm are denoted as the background markers. To separate
con�uent drusen, the marker-controlled watershed segmentation is applied with
the imposed foreground and background markers in the segmentation function.
Example of the obtained individual drusen segmentation is shown on Fig. 4.

44 H. Bogunović et al.



(a) T0 (b) T0 + 3 months (c) T0 + 6 months

Fig. 5: Aligned drusen thickness maps at (a) baseline visit T0, (b) visit at month
3, and (c) visit at month 6 when the drusen regression already occurred.

2.4 Spatial Alignment

To characterize drusen development across time, it is important to establish
spatial alignment between the longitudinal scans of the same patient (Fig. 5).
Before the OCT acquisition, confocal scanning laser ophthalmoscope (SLO) is
used to acquire isotropic 2D fundus image of the same �eld of view, with superior
spatial resolution than OCT. The SLO fundus image and the OCT image are ac-
quired through the same optics and are co-registered by the device. To establish
intra-patient spatial correspondence, we employ a keypoint-based registration
between the SLO images. The keypoints are located using SURF feature detec-
tor, which is robust to substantial illumination changes. Finally, all scans of a
patient are registered to its baseline scan using a similarity transform and the
transformations resulting from the registration of SLO images are applied to the
corresponding OCT images.

2.5 Feature Extraction and Classi�cation

To capture drusen properties, we compute the following set of features from the
baseline scan for each druse within the region of interest de�ned by its footprint:

Shape Druse height, area, volume and the mean thickness of the three seg-
mented layers.

Intensity Internal re�ectivity of the three segmented layers expressed as mean
and std. dev. values of pixel intensities.

HRF Density and volume of HRF in ONL and ORB layers.

This results in 16 features per druse. In addition, di�erential features describing
the development from baseline to the follow-up scan are computed, making a
total of 32 features. The prediction model is built using random forest classi-
�er, proved to be especially e�ective in classifying high dimensional and het-
erogeneous features. The forest has been grown with 200 trees and 4 features
randomly sampled as candidates at each split of a tree.
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3 Results

The proposed method is evaluated on a longitudinal dataset consisting of 44
eyes from 26 patients with early and intermediate AMD enrolled in a prospec-
tive observational clinical study. The patients were monitored for a minimum
of 1 year with 3 month follow-up intervals. The OCT imaging was performed
with Spectralis SD-OCT (Heidelberg Engineering), which acquires anisotropic
3D images having 1024× 97× 496 voxels with the size of 5.7× 60.5× 3.87 µm3,
covering the volume of 6 × 6 × 2 mm3. In addition, the device acquires SLO
image with 1536 × 1536 pixels of size 5.7 × 5.7 µm2. Even though Spectralis
device has a rescan feature, allowing follow-up scans to be acquired at the same
location as the prior scans, it was not always utilized hence the need for the
spatial alignment by the developed image registration method.

Given the large number of segmented drusen at the baseline (589 in total),
the individual druse regression timepoint is de�ned in an automated manner as
the point when the volume drops and stays at below 10% of its baseline value. In
our study population, 11% of individual drusen regressed within the 12 months.
Only drusen larger than 0.001 mm3 and within 5 mm circle around fovea are
considered, as done similarly in [2, 10]. The prediction performance was evaluated
using leave-one-patient-out cross-validation. The results are reported as the area
under the receiver operating characteristic (ROC) curve (AUC). The feature
importance is measured during the random forest training as the increase in
prediction error if the values of that feature are permuted across the out-of-bag
observations.

The ten most important features for prediction are shown in Fig. 6(a). It
can be observed that HRF-based features played an important role and appear
in six of the top ten features. This is consistent with the reports from natural
history observations [3]. We have built and evaluated di�erent predictive models
using a subset of features to further measure the impact of intensity-based and
HRF-based features on the performance (Fig. 6(b)). The performance increased
monotonically with the addition of the intensity and HRF features obtaining the
AUC of 0.73 (shape only), 0.76 (shape + intensity), and 0.81 (shape + intensity
+ HRF). Setting the operating point that maximizes both the sensitivity and
speci�city produced a sensitivity of 0.74 and a speci�city of 0.73.

4 Summary and Conclusion

Currently there is no treatment available for nonexudative AMD and the disease
progresses slowly. Moreover individual progression rates are markedly heteroge-
neous. Thus, knowing which subjects are at a higher risk of disease regression
and hence of late AMD development would �nd its application in clinical prac-
tice as well as designing the clinical trials. In this paper we built and evaluated
a predictive model at the level of an individual drusen and showed that predict-
ing drusen regression is feasible. To the best of our knowledge this is the �rst
time a model predicting regression of a druse has been proposed. In addition,
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Fig. 6: (a) Top ten most important features. (b) ROC curves of predictive models
built with di�erent feature subsets.

we con�rmed that HRF does have an important predictive role. We bene�ted
from a clinical dataset which contained 3-month follow-ups, which is unusually
frequent, allowing to compute di�erential features and identify the regression
event with greater precision.

This study has several limitations, most notably the small number of patients
in the dataset. This is partly due to the di�culty in identifying and recruiting
patients for a clinical study because early and intermediate stages of AMD do
not yet hinder patients' vision. In addition, we identi�ed drusen footprints at
baseline and kept them �xed, hence not accounting for possible drusen area
expansion with time. Finally, the regression event serving as target for learning
and testing the prediction has been identi�ed in an automated manner, which
is susceptible to segmentation inaccuracies.

In general as drusen grow they merge with neighboring ones to create a
con�uent drusen. Regression of one part of such drusen causes the entire con-
�uent drusen to regress. Here we model each part of con�uent drusen indepen-
dently. The exploitation of structural information and interaction with neigh-
boring drusen is a subject of future work.

This preliminary study is a promising step toward identi�cation of imaging
biomarkers of incoming regression which develops within a predictable and clin-
ically relevant time frame, thus facilitating the development and evaluation of
novel interventions that target early and intermediate stages of AMD.
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