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Abstract. Accurate segmentation of optic cup and disc in retinal fun-
dus images is required to derive the cup-to-disc ratio (CDR) parameter
which is the main indicator for Glaucoma assessment. In this paper, we
propose a coupled regression method for accurate segmentation of optic
cup and disc in retinal colour fundus image. The proposed coupled regres-
sion framework consists of a parameter regressor which directly predicts
CDR from a given image, as well as an ensemble shape regressor which
iteratively estimates the OD-OC boundary by taking into account the
CDR estimated by the parameter regressor. The parameter regressor and
the shape regressor are then coupled together within a feedback loop so
that estimation of one reinforces the other. Both parameter regressor
and the ensemble shape regressor are modeled using Boosted Regression
Trees. The proposed optic cup and disc segmentation method is applied
on an image set of 50 patients and demonstrates high segmentation accu-
racy. A comparative study shows that our proposed method outperforms
state of the art methods for cup segmentation.

1 Introduction

Glaucoma is a chronic and irreversible neurodegenerative ocular disorder in
which the optic nerve head is progressively damaged, leading to deterioration
in vision and quality of life [2]. It will affect approximately 80 million persons
worldwide by 2020 [1]. Glaucoma is commonly asymptomatic. The patients are
usually ignorant about it until a noticeable visual loss occurs at a later stage.
Early detection and treatment are essential for glaucoma patients to reduce the
progression of their vision loss. Glaucoma diagnosis mainly depends on the med-
ical history, intra-ocular pressure and visual field loss tests together with an
assessment of the Optic Disc (OD) through ophthalmoscopy. In 2D color reti-
nal fundus images, the OD can be divided into two distinct regions; namely, a
central bright region called the optic cup (OC), and a peripheral region called
the neuroretinal rim. The loss in optic nerve fibers leads to the enlargement of
cup region called cupping. One of the important indicators of glaucoma is the
enlargement of the cup with respect to OD which can be measured as the verti-
cal cup to disc ratio CDR. Quantification of CDR requires accurate delineation
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of the boundaries of the optic disc and cup. However, manual annotation of the
optic cup and disc boundary is time consuming, expensive and highly subjective.

A number of methods have been presented in the literature for automatic
segmentation of disc and cup [4]. Existing Optic disc segmentation techniques
based on active contours [3, 5] and morphological feature [5] are capable of pro-
ducing reliable OD boundary. However, their performance still depends on the
initialization and the ability to identify weak edges of neuro retinal rim in fundus
images. Optic cup segmentation is more challenging because the depth informa-
tion is not available in 2D retinal fundus images. As a result, cup boundary is
ill defined and in-homogeneous which makes the segmentation more difficult.
Existing approaches of optic cup segmentation are based on level sets [8], super-
pixels classification [9] and sparse dictionary learning [14]. In another method
[13], fusion of cup segmentations from multi-view fundus images was performed
to improve the performance. In some recent work, the presence of glaucoma in
fundus images is predicted by classification using SVM [16] and deep feature
learning [15], thereby bypassing the OD-OC segmentation.

In this paper, we propose a novel coupled shape regression (CSR) method
which combines the CDR estimation and OD-OC segmentation by exploiting
their correlation, in order to improve the accuracy segmentation. The proposed
method consists of two separate regression models connected in a feedback loop.
The first regression model is trained to estimate the CDR by directly regress-
ing the image features with respect to a given segmentation of OD. The sec-
ond model consists of an ensemble shape regressor which iteratively predicts
multi-dimensional OD-OC shape boundary points from an image by taking into
account CDR estimated by the parameter regressor. Our method interweaves
the estimation of CDR and segmentation of OD-OC such that estimated CDR
guides the segmentation process to improve the segmentation performance. Ulti-
mately, the final CDR value calculated from the OD-OC segmentation output is
shown to be more accurate than intermediate CDR values generated by the char-
acteristics regressor. To the best of our knowledge, no such method exist that
integrates the organ parameter estimation model to improve the segmentation
performance.

2 Proposed Method

In the proposed CSR method, a parameter estimation model and an ensemble
shape regression model are coupled together to directly predict the OD-OC shape
boundary from a input retinal image. Given a training examples {Ii, 5’,-, éz}

i=1
where I; is a retinal fundus image, S; is a ground truth OD-OC shape vector
and ¢; is the ground truth CDR parameter, the subsections below describes
the training of the parameter estimation model and ensemble shape regression
model.
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2.1 Parameter estimation

The parameter estimation model takes an image I and a segmentation S to
directly predict CDR parameter and is given by

c=F(I,5) (1)

where the input segmentation S is used to obtain the optic disc region in I.
To train this model, we first crop the disc image from the fundus image using
the ground truth segmentation. The location of the disc and cup are the main
underlying cues that determines the cup to disc ratio. Therefore, the spatial
structures are very useful in suggesting the cup to disc ratio. We use a multi-
scale spatial pyramid of local binary pattern (LBP) histogram to encodes local
texture, as well as their spatial arrangements. In our approach, LBP histograms
are computed at three level of spatial pyramid. In the first level, LBP histogram is
computed for entire disc image. In the second and third level, the LBP histograms
are computed in overlapping patches of size h/2 x w/2 pixels and h/4 x w/4
respectively. The LBP histograms computed over all the spatial patches are then
concatenated in a predefined order to form a global feature vector x. We then
use Boosted Regression Tree (BRT) [11] to model the CDR estimation using the
extracted features. BRT iteratively builds a strong regressor from several weak
regressors and expressed in the following additive form:

Fm(x):Fm—l(X)_‘_me(X)? (2)

where F,, is a regressor obtained at m'" iteration, f,, is the weak regressor
modeled using a regression tree and < is a shrinkage parameter that controls the
learning rate and selecting 0 < v < 1 helps to prevent overfitting [11]. In BRT,
the regression tree f,, is trained using the residuals response computed from
the training samples. For the sum of square loss, residuals of the i** training
sample is computed as g,,(xt) = é — Ff,_;(x!). Next, the regression tree f,, is
trained using {x;, gm (xﬁ)}fvzl To train the regression tree with L terminal nodes,
the feature space is recursively partitioned into L disjoint regions. The output
response for a partition can be computed as the mean of the training residuals
that falls in the partition. Optimal feature dimension and feature split values are
selected by minimizing the sum of squared deviation error [11]. This way, BRT is
trained by iteratively adding a regression tree to Equation 2 until training error
is below a specified maximum.

2.2 Coupled Shape Regression (CSR)
Our segmentation model (denoted by Equation 3) iteratively builds strong shape
regressor by cascading T weak shape regressors Ry, --- Rr.

St — Stfl + Rt(I, St717ct71) (3)

where each weak shape regressor R’ is a function of a previous segmentation S¢~!
and previous CDR ¢!~! and is trained to predict a shape increment vector AS

3



4 S. Sedai et al.

to update the previous segmentation. Given an image I and an initial OD-OC
shape SY, our method computes both OD-OC segmentation and CDR values in
iterative fashion. At each iteration, CDR is first estimated using the parameter
estimation model as ¢* = F(I, S*™!). Next, the estimated CDR is used to predict
the OD-OC boundary using Equation 3. The following paragraphs describes the
training of the weak shape regressor.

Training data augmentation: The proposed method generate the final seg-
mentation from a given initial segmentation. Each training sample is therefore
augmented with multiple initial shapes. To augment the " training sample, we
randomly sample k training shapes from the remaining training set. Each sam-
pled shape is transformed to fit within the OD region in I;. This results in the

augmented training set {IZ-, S;, S?} . *“ where Nyg=N x k. This augmented set

=1

is used to train the first regressor R! in the ensemble. After the t'" regressor

A Nag
have been trained, the augmented set is updated to form {Iz-, Si, Sffl} ’ where

i=

S,ffl is computed using Equation 3. Hereafter, we refer 5571 as previous shape.

Image Feature Extraction To train the regressor R we compute the image
features indexed by the previous shape S*~!. To compute the shape indexed
image features, first () pixel locations are sampled in the space of the mean OD-
OC shape S where each pixel location is indexed by its nearest shape point using
an offset vector. Next, the pixel locations are transformed to the absolute image
coordinate for each image I; in the training set by adding the offset vector to the
point in Sf ~! corresponding to the selected nearest point in S. This way, the pixel
locations are indexed relative to the previously estimated shape S*~1, rather than
the original image coordinates. This leads to better geometric invariance against
the shape variation, and in turn helps the regressors to converge more quickly
[10]. The features are then computed as intensity difference between any two
pixels. The pixel difference features are not only cheap to compute but also they
are robust to illumination variation which is commonly present in retinal fundus
imaging. We compute the difference between intensity values for any two pixel
resulting Q(Q — 1)/2 dimensional feature vector to train the regressor R’.

Training of R* Given the augmented training data {Il—, S;, Sf_l }éa? our goal
is to train each regressor R in the ensemble by taking into accounfc the param-
eter estimation model trained in Section 2.1. In doing so, first, the shape index
feature vector is computed from I; using the previous shape estimate Sit*l as
described above. Second, the cdr is estimated from the trained parameter es-
timation model for the given I; and Sf ~1. We regard the estimated cdr value
as a derived feature, therefore, concatenate with the shape index feature vector
to obtain the combined feature vector z!. Next, the regressor R! is trained to
map from the combined feature space z! to the target shape increment vector
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Algorithm 1 Training steps of the proposed coupled regression method for
OD-0OC segmentation

. N
Given a set of training images and training shapes {Ii, Si, c}}

i=1
Train a CDR estimator as described in Section 2.1

Augment the data as {Ii, S, S?}{Vag described in Section 2.2

Fort=1..-T =

(a) Compute the image-based feature vector x for each augmented sample

(b) Estimate the CDR using the trained parameter estimation model ¢! =

= W oo

F(1,87) X
(c) Compute the shape increment vector ASY = §; — SI™! for i = 1,--- Nug
(d) Train the shape regressor R’ using the training data {cf,xf, ASf}iV:“f as de-

scribed in Section 2.2.
(e) Update S! in the augmented set using the trained cascade for i = 1,--- Nug

AS! = S; — Sffl. Intuitively, R? is trained to predict the difference between the
ground truth boundary S; and the boundary computed by the previous ensemble
Sf_l so that once the predicted shape increment vector is added to the previous
shape (as shown in Equation 3) it results in true segmentation. Therefore, the

regressor R is trained using {z!, ASf}f\;“f as follows.

We use boosted regression tree described in Section 2.1 to model R?. Since our
output shape increment vector AS € RF is multi-dimensional, we model the weak
learner using the multi-dimensional regression tree where each partition in the
terminal nodes of the regression tree is represented by a P-dimensional constant
response vector. Using BRT to model R! aids in effective selection of higher
dimensional pixel difference features. Moreover, we can represent the output
response as multi-dimensional vector by maintaining the correlation between
the output dimensions.

2.3 Segmentation prediction

To obtain the segmentation of cup and disc in a test image, we need to initialize
the shape in the OD region. To obtain the initial OD bounding rectangle, we
employed the method of Template Matching [17] which is based on edge filtering,
constraint elliptical Hough transform and peripapillary atrophy detection. We
then use mean shape S computed from the training shapes as an initial shape
by transforming the mean shape to fit within the segmented OD bounding rect-
angle. The transformed mean shape is taken as an initial shape and is fed to
the trained coupled regression system to obtain the final segmentation in an
iterative manner. At each iteration, CDR value is estimated using the trained
cdr regressor (as described in 2.1) . The estimated CDR value is then fed into
the trained ensemble shape regressor (as shown in Equation 3) to update the
initial segmentation of OD-OC. Therefore, after T iterations, we obtain the final
segmentation of OD-OC and the estimated CDR value.

5
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3 Experiments

The proposed method is evaluated on the retinal images of DRISHTI-GS1 dataset[12]
provided by Medical Image Processing (MIP) group, IIIT Hyderabad. All im-
ages were taken with the eyes dilated, centered on OD with a Field-of-View of
30-degrees and of dimension 2896 x 1944 pixels and PNG uncompressed image
format. The training and test sets of DRISHTI-GS1 contains 50 and 51 retinal
image, respectively. For training images, ground truth segmentation mask of op-
tic disk and cup are provided with corresponding CDR, values. We did not use
the test set as the ground truth is withheld. We have evaluated our segmentation
approach on the dristi training set using 5—fold cross validation using holdout
method. First, the drishti training set is divided into 5 sub sets and holdout
method is repeated 5 times, each time one of the 5-subsets is used as the test set
and other 4-subsets are put together to form a training set. Then the average
segmentation performance across all 5 test sets are computed. For our training
purpose, we convert the segmentation mask of OD and OC to the shape bound-
ary with 120 points resulting in P = 240 dimensional OD-OC shape vector. The
number of ensemble shape regressors is set to T' = 20 as we found that setting
T > 20 did not improve the performance.

We converted the predicted disc and cup boundaries to segmentation mask
for evaluation. The segmentation performance is measured in terms of F-score
between the automatic segmentation mask and manual segmentation as done
in the benchmark study [12]. Table la shows the segmentation performance of
the proposed Coupled Shape Regression (CSR) method compared to the state
of the art methods from the benchmark study [12]. We also compared with
Shape Regression (SR) that do not take into account CDR estimation model for
segmentation. We found the F-score of 0.86 for optic cup segmentation which
significantly outperforms other methods while giving comparable performance
for disc segmentation. The CSR method also significantly improves the seg-
mentation performance in comparison to SR demonstrating the effectiveness of
coupling of the CDR estimation in segmentation. To measure the segmentation
performance in deriving the clinically relevant parameter, we compute CDR
from the output segmentation as as the ratio of the vertical diameter of OC and
OD. Table 1b compares the mean CDR estimation error for the segmentations
produced by CSR and SR as well as for the intermediate CDR estimated by
the parameter regressor (PR). The lowest CDR estimation error is obtained for
CSR which demonstrates that our method can accurately predict the clinically
relevant parameter.

Figure 1 (a) shows the average RMSE error between the ground truth shape
and the estimated shape for each iteration of CSR and SR. This illustrates that
the coupling of the parameter regressor in CSR has significant impact in improv-
ing the segmentation performance. Figure 1 (b) shows the segmentation output
of our proposed method and corresponding manual segmentations for both optic
disc (outer boundary) and optic cup (inner boundary). Experiments are per-
formed on an Intel Core i7 CPU @ 2.6 GHz. The method took 600 milliseconds
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Table 1: (a) Optic disc/cup segmentation performance of the proposed method
compared with other state of the art methods. The benchmark results are for the
training set and are taken from [12]. (b)Mean CDR estimation error compared
to other methods
(b) CDR estimation
(a) error

‘Method/Organ‘ optic cup ‘ optic disc ‘ ‘Method‘ error ‘

CSR 0.86 £ 0.06/0.95 & 0.02 CSR |0.08+0.1
SR 0.85 £ 0.08|0.95 £ 0.02 PR (0.09+0.12
[6] 0.74 £ 0.20|0.96 £ 0.02 SR |0.12+£0.1
13 0.77 £0.17 -

14 0.80 £ 0.18 -

—*—SR
-

RMS error

2 4 6 8 10 12 14 16 18 20 22
iterations

(a)

Fig. 1: Example outputs of our proposed OD-OC segmentation method. The
manual segmentations are outlined in red color and automatic segmentation are
outlined in yellow color. The outer and inner boundaries respectively corresponds
to optic disc and cup.

to segment both OD and OC in a retinal fundus image after the OD insert points
have been detected.

4 Conclusions

We have proposed a coupled regression method to segment optic disc/cup by
leveraging the CDR parameter estimation model in retinal fundus images. The
proposed segmentation method consists of an ensemble non-linear shape regres-
sors that takes into account the CDR estimated by a parameter regressor. The
parameter regressor is trained to predict the CDR directly from the image. Our
method starts with an initial shape which is iteratively updated by each regressor
in the ensemble to obtain the final shape. We modeled the parameter regressor
and each regressor in the ensemble using boosted regression trees. Experimen-
tal evaluation shows that the proposed method outperforms existing optic cup
segmentation methods, while competing with optic disc segmentation methods.
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