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Abstract. We propose a novel convolutional neural network (CNN)
based method for optic cup and disc segmentation. To reduce compu-
tational complexity, an entropy based sampling technique is introduced
that gives superior results over uniform sampling. Filters are learned
over several layers with the output of previous layers serving as the
input to the next layer. A softmax logistic regression classifier is sub-
sequently trained on the output of all learned filters. In several error
metrics, the proposed algorithm outperforms existing methods on the
public DRISHTI-GS data set.

1 Introduction

Glaucoma is one of the leading causes of irreversible vision loss in the world.
Due to the aging world population, the WHO estimates that the number of
people affected by glaucoma disease may increase to almost 80 million by 2020
[13]. Glaucoma progression is characterized by increase of optic cup area in
color fundus images. Our work aims to develop a learning based algorithm using
convolutional neural networks (CNN) to segment the optic disc (OD) and optic
cup (OC) from retinal fundus images.

There exist numerous approaches for automatic optic cup and disc segmen-
tation such as morphological features [1] and active contours [10]. Their perfor-
mance depends upon contour initialization and ability to identify weak edges.
Machine learning (ML) methods [4] have gained importance as they provide a
powerful tool for feature classification. Success of ML methods depends on care-
fully hand designed features. However, hand crafted features limit their applica-
bility to different datasets. This work proposes to learn the most discriminative
features for OC and OD segmentation in the form of convolutional filters.

Mayraz and Hinton [12] proposed a hierarchical learning procedure based on
a probabilistic learning framework called the product of experts [3], where the
probability of an image is described by the normalized product of learned indi-
vidual distributions. Another approach that also employs a hierarchical network
and was evaluated on medical images is used in [11], where a CNN is learned from
multiple scales by optimizing a 2-norm orthogonal matching pursuit problem.

X. Chen, M. K. Garvin, J. Liu, E. Trucco, Y. Xu (Eds.): OMIA 2015, Held in Conjunction
with MICCAI 2015, Munich, Germany, Iowa Research Online, pp. 153–160, 2015. Available
from: http://ir.uiowa.edu/omia/2015_Proceedings/2015/

http://ir.uiowa.edu/omia/2015_Proceedings/2015/


Ciresan et al. [5] used a Deep Neural Network (DNN) to segment neuronal struc-
tures in electron microscopy (EM) images and significantly outperform state of
the art. Turaga et al. [17] segment neuronal structures in EM images by learning
an affinity graph using a CNN. Our work proposes a novel CNN architecture
for OC and OD segmentation without the need to define hand crafted features.
This improves the algorithm’s generalization ability. The primary contributions
of this paper are: 1) a novel sampling strategy is introduced to identify land-
marks that provide high information content to train our CNN architecture; and
2) a boosting framework is introduced to learn convolutional filters in our CNN
architecture.

2 Method

Preprocessing: Each image is cropped with the optic disc or cup relatively
central to the image and some background pixels around the OD and OC. This
allows the algorithm to capture the essential characteristics of the image while
focusing on the OC and OD. All images are downsampled by a factor of 4 to
reduce computation complexity. The RGB images are converted to L*a*b color
space. The intensity mean is subtracted from all pixel values and divided by the
standard deviation. The intensities are then normalized to [0, 1]. Figures 1 (a),(b)
show an example original image and the normalized image after preprocessing.

Entropy sampling: Entropy maps are calculated for each color channel
using entropy filtering [8] and highly informative points selected to reduce the
computational. They are used to training our CNN architecture. Figure 1 (c)
shows the entropy filtered output of the original image. The informative points
have higher value in the image.

2.1 Boosting convolutional filters:

Figure 1 (d) illustrates our method’s architecture. Convolutional networks are
composed of individual convolutional filters which can be regarded as classifiers
in an ensemble. In that sense, the question may be posed how one could learn
such filters in a principled manner. Different principled methods exist to arrive
at an ensemble classifier of which the most popular are Boosting [7] and Bagging
[2]. Kiros et al. [11] proposed to learn a generative convolutional network with
two layers through bagging and solving an optimization problem for each filter
using orthogonal matching pursuit. The key requirement is successive filters
need to be orthogonal to previously learned filters. In contrast, in this work we
propose a more direct way of exploring different filters through boosting to learn
a discriminative convolutional network.

As a first step, 3 × 3 patches around each sampled point are extracted. To
ensure that the filters do not need to learn superfluous patterns, such as similar
patterns with different magnitude, all patches are subjected to Local Contrast
Normalization as done in [11]. To this end, each patch is reshaped into a vector
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xpatch and divided by the l2-norm of the patch. The mean of the patch vector is
then subtracted.

Using the extracted patch data, the following optimization problem is solved
for each filter individually

minimize
w

N∑

i=1

vi · |yi − xiw| (1)

where yi ∈ Y = {−1,+1} is the label of a given training point i, xi ∈ Xpatch

represents the corresponding patch around point i. w is the convolutional filter in
vector form that is to be learned, and vi are the positive weights on an individual
data point. The CVX optimization environment [9] was used. The architecture
specifications can be summarized as:

1. Filters of size 3 × 3 × nmaps are trained, where nmaps corresponds to the
number of channels of each input image, e.g. three for a regular RGB image.

2. 500 points are sampled to learn convolutional filters for each scale.
3. Filters are learned for five scales in the first layer and four scales in the

second layer. This gives the local algorithm (3 × 3 filters) a more global
understanding.

4. Two layers of convolutional filters are implemented. For the optic disc, five
filters per scale are learned in the first layer and one filter per scale in the
second layer. For the optic cup, six filters per scale are learned in the first
layer and one filter per scale in the second layer. This makes for a total of 29
filters for the optic disc and 34 filters learned for the optic cup segmentation.
Since optic cup segmentation is more challenging, more filters lead to better
segmentation

Exploration of different filters is done through reweighting of data points
based on Gentle AdaBoost [6] as it generalizes better by avoiding overfitting.
The following reweighting is performed:

Initialize the weights as vi = 1
m , for i = 1, . . . ,m. For n = 1, . . . N :

1. Estimate the “weak” hypothesis hn(x), i.e. learn filter w and bias b in the
optimization problem 1.

2. Update weights

vi ←
vi · exp(−yihn(xi))

Zn
(2)

with Zn chosen so that
∑m
i=1 vi = 1.

α is always set to 1 and is determined by the error ε of the individual classifier,
where a highly accurate classifier yields a high α factor and an inaccurate clas-
sifier yields low α factor as can be inferred from the equation defining α in this
paragraph. The output of the convolution of each filter is passed through a tanh
saturation function. As previously done for preprocessing, the mean of the image
is subtracted and all values are divided by the standard deviation. Again, values
are rescaled to lie in the range [0, 1]. These convoluted images are then passed
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through a max-pooling operation [15] to introduce further robustness into the
system. In a second layer, the stacked output maps of the filters learned in the
first layer are used as input. This second layer can be regarded as an extended
ensemble classifier. The ensemble classifier is extended in the sense that not only
values of one point for multiple individual classifiers are treated but the patch
around these points as well. This reads as

Hconv(x) =

K∑

i=1

∑

p∈patch
wi,phi(p) (3)

where Hconv(x) is a convolutional filter of the second layer (or any further layers),
p denotes the positions of points in the patch around point x, wi,p are the learned
weights for the convolutional filter in layer two and hi(p) describes the processed
output of convolutional filter i of the previous layer. The processed output of the
convolution of filters with the input images provide a good impression of which
characteristics of the image a filter is focusing on. Figure 1 e) shows the output
of the first filter in the first layer, while Figure 1 f) shows the output of the first
filter in the second layer, i.e. an extended ensemble filter. Figure 2 (a) shows a
subset of the learned filters for OC and OD.

2.2 Classification

A classifier is trained on the extracted features of all sampled points, which are
the output of each convolutional filter, the color values at these points and a
“centricity” score. To extract the output of each convolutional filter, filters at
smaller scales are upsampled to the original image size. For each image, 5000
points are sampled for which the L*a*b colors as well as the output of each convo-
lutional filter at these points are extracted. Additionally, a “centricity number”
of the sampled points is extracted which is meant to be a value measuring the
“radius” from the center of the optic disc. The centricity is calculated by find-
ing the weighted centroid c of the maximum intensity region of the L-color in
L*a*b color space and calculating the outward radius from this point for a given
sampled point as

C =
(px − cx)2

lx
+

(py − cy)2

ly
(4)

where lx, ly is the width and height of a the given image, p is the position of the
sampled point and c denotes the centroid’s position. These are the features on
which subsequently a softmax logistic regression classifier is trained as in [11].
The resulting probability map is shown in Figure 1 g).

Postprocessing: After classification, an unsupervised graph cut algorithm
[14] is applied to the probability map in the previous subsection to smooth the
results as demonstrated on the sample image in Figure 1 h). A convex hull trans-
form is applied to the graph cut output. Given the oval shape of both the optic
disc and cup it is apriori known that a convex shape is to be detected. Taking
the convex hull of the graph cut output unites previously disjoint regions that
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 1. (a)Example original image; (b) image after preprocessing and normalization
of (a); (c) entropy filtered output; (d) illustration of CNN architecture; (e) output of
the first filter in the first layer; (f) output of the first filter in the second layer; (g)
probability map from logistic regression classifier; (h) graph cut segmentation; (i) final
output after convex hull fitting.

all belong to the optic disc or cup. The improved segmentation is demonstrated
in Figure 1 i).

3 Experimental results

Our proposed method for optic disc and cup segmentation was validated on the
DRISHTI-GS dataset [16] which consists of 50 patient images obtained using
30 degree FOV at a resolution of 2896 × 1944. We use a 5 fold cross validation
scheme with 40 training images and 10 test images in each fold. The ground
truth disc and cup segmentation masks were obtained by a majority voting
of manual markings by 4 ophthalmologists. Quantitative evaluation is based
on F-score (F = 2 P × R/(P + R)) to measure the extent of region overlap
and absolute pointwise localization error B in pixels (measured in the radial
direction); P is precision and R is recall. Additionally we report the overlap
measure S = Area(M∩A)/Area(M∪A). M is the manual segmentation while A
is the algorithm segmentation. Our whole pipeline was implemented in MATLAB
on a 2.66 GHz quad core CPU running Windows 7.

3.1 Segmentation Performance

Table 1 summarizes the segmentation performance of different methods. Our
proposed method, CNN , outperforms all the competing methods as is evident
from the higher F and S values, and lower B values. The difference is also
statistically significant since p < 0.01 (from Student-t tests) for all methods
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Optic Disc Optic Cup

CNN [4] [18] [10] [16] CNN [4] [18] [10] [16]

F 94.7 93.0 92.2 90.8 95.0 83.0 80.8 78.4 78.9 80.7
S 89.5 87.3 86.8 85.0 85.2 86.4 82.1 80.1 82.5 84.2
B 9.1 9.4 9.9 12.1 11.7 16.5 19.3 20.6 17.2 16.2

Table 1. Segmentation performance for OC and OD segmentation using different
methods.

(a) (b) (c) (d) (e)
Fig. 2. (a) Subset learned filter for OD (top row) and OC (bottom row). Segmentation
results for different methods: (b) our proposed CNN model; (c) integrated disc and
cup segmentation method of [18]; (d) superpixel segmentation method of [4] and ; (e)
[10]

compared to CNN . Segmenting the optic cup is more challenging than the disc
due to absence of distinguishing depth information. While pallor is one factor,
it is not always reliable due to similar intensity profiles of neighboring regions.
CNN obtains high segmentation accuracy than hand crafted features by learning
image priors for the cup region.

Since [4] is a superpixel based approach, pixels from different classes may
be grouped in one superpixel which affects its performance. [10] uses a modified
Chan-Vese model, which finds it challenging to segment the optic disc using
only intensity information. [1] uses only morphological features which is good
enough for disc segmentation, but does not perform as well for cup segmentation.
However CNN outperforms all these methods. Figure 2 shows the comparative
results of FoE and the combined disc and cup segmentation methods of [4],[18]
and [10].

For optic disc segmentation all the methods perform almost at the same level
since OD is much easy to segment. However CNN ’s advantages are prominent
for cup segmentation. CNN outperforms the state-of-the-art approaches tested
by Sivaswamy et al. [16] which achieve a maximal F-score of 0.80 on the training
set. On the other hand CNN achieves a F-score of 0.83 with a smaller standard
deviation than the other methods. CNN also has lower boundary localization
error than other competing methods. We also show the best and worst case
results for optic disc (Figure 3) and optic cup (Figure 4).
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Best: Truth Method Worst: Truth Method

Fig. 3. Results of best/worst case segmentation for optic disc, respectively

Best: Truth Method Worst: Truth Method

Fig. 4. Results of best/worst case segmentation for optic cup, respectively

4 Discussion and Conclusion

This paper introduced a novel entropy sampling method within a CNN architec-
ture. Building upon this technique, an original framework for learning convolu-
tional filters in a principled manner using boosting was described. The boosted
network of convolutional filters was shown to outperform existing methods on
the DRISHTI-GS data set. Entropy sampling competently finds more relevant
points than uniform sampling. Boosting convolutional filters is able to learn very
discriminative convolutional filters even for small data sets. Our proposed CNN
architecture, helped by entropy sampling, focuses to learn discriminative features
from more relevant points.
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