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Abstract. In many diseases with a cardiovascular component, the ge-
ometry of microvascular blood vessels changes. These changes are spe-
cific to arteries and veins, and can be studied in the microvasculature of
the retina using retinal photography. To facilitate large-scale studies of
artery/vein-specific changes in the retinal vasculature, automated clas-
sification of the vessels is required. Here we present a novel method for
artery/vein classification based on local and contextual feature analysis
of retinal vessels. For each vessel, local information in the form of a trans-
verse intensity profile is extracted. Crossings and bifurcations of vessels
provide contextual information. The local and contextual features are
integrated into a non-submodular energy function, which is optimized
exactly using graph cuts. The method was validated on a ground truth
data set of 150 retinal fundus images, achieving an accuracy of 88.0%
for all vessels and 94.0% for the six arteries and six veins with highest
caliber in the image.
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1 Introduction

The retinal vasculature can change function or geometry in a variety of ocular
and systemic diseases, including glaucoma, macular degeneration, atherosclero-
sis, and hypertensive or diabetic retinopathy [1]. One of the earliest signs of these
diseases is generalized arteriolar narrowing, in which the calibers of arteries de-
crease relatively to the calibers of veins. This phenomenon can be quantified
using the ratio of the arteriolar and venular diameters, which is summarized in
a value called the arteriovenous ratio (AVR). The AVR is commonly computed
from the six arteries and veins with highest caliber in a zone around the optic
disc [2]. Automated methods that measure the AVR directly from a retinal im-
age require localization of the vessels and classification of vessels into arteries
and veins. Additionally, artery/vein classification of retinal vessels is necessary
for other artery/vein specific vessel features, such as vessel tortuosity [3].
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Most existing automated artery/vein classification methods have focused on
classification of vessels via local intensity-based features [4–6]. The difference
in appearance of arteries and veins in white light retinal images is primarily
determined by the oxygen-content of the blood, causing arteries to appear bright
red, whereas veins look darker. An additional difference in intensity is sometimes
present in the central light reflex on the vessels caused by the white flash of
the camera. In arteries this reflection is often more pronounced, and can be
used to distinguish them from veins [5, 6]. Recent methods have also focused on
contextual information present in bifurcations and crossings of vessels. These
methods make use of the fact that vessels that join in a bifurcation must be of
the same type, and two crossing vessels must be of opposite type [7–9].

We propose a novel and generic graph-based method to combine local and
contextual features of the retinal vasculature for artery/vein classification. In
contrast to previous graph-based methods such as [7–9], here the classification is
defined as an optimization problem, based on a non-submodular energy function
that is minimized exactly and efficiently using the Quadratic Pseudo-Boolean
Optimization (QPBO) graph cut algorithm. Optimization of this energy gen-
erates a classification of all detected vessels based on local features, while the
contextual features limit the number of possible configurations of vessel labels.
This results in a flexible approach in which the influence of contextual and local
information can be weighted based on the their confidence levels.

2 Methods

Models of the retinal vasculature form the basis of our approach. In our work, we
rely on models of the vessels around the optic disc, made using the Edge Tracking
in Orientation Scores (ETOS) algorithm [10], but in principle any model that
provides the edges of vessels and detects their crossings and bifurcations can be
used, for example [11, 12, 9]. The models are used to define an energy function
(Section 2.1) that uses features extracted from both the image and the model
(Section 2.2). Optimization of the energy results in artery/vein labeling of the
vessels in the model (Section 2.3).

2.1 Energy function definition

The energy function has the form of a binary first-order Markov Random Field
(MRF)

U(y) =
∑

u∈V
θu(yu,xu)

︸ ︷︷ ︸
unary term

+λ
∑

(u,v)∈E
θuv(yu, yv)

︸ ︷︷ ︸
pairwise term

. (1)

In this formulation, the first term is a sum of unary potential functions θu,
taking as input a binary label yu ∈ {0, 1} and an evidence vector for this label
xu. The second term consists of pairwise potentials θuv, each a function of a pair
of labels. The binary MRF variables can be described as a set of vertices V in
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an undirected graph G = (V,E). The set of edges E in this graph contains the
pairwise potentials. The λ parameter weights the pairwise term relative to the
unary term.

In our artery/vein classification approach, each of the binary variables yu
corresponds to a vessel u that needs to be labeled as artery (yu = 1) or vein
(yu = 0). Minimization of the energy in Equation (1) should result in an optimal
labeling of the vessels

y∗ = arg min
y

U(y). (2)

The unary potentials optimize the labels based on local feature vectors xu
that have been extracted for each vessel. We define the unary potential as
θu(yu,xu) := − ln p(yu|xu), where p(yu|xu) is a posterior PDF which can be
derived using Bayes’ theorem

p(yu|xu) =
p(xu|yu)p(yu)

p(xu|yu = 0)p(yu = 0) + p(xu|yu = 1)p(yu = 1)
. (3)

where p(xu|yu) is the likelihood of a feature vector xu for a given label yu,
and p(yu) is the prior PDF of the label yu. We assume that the likelihood of
the feature vectors xu follows a multivariate Gaussian distribution p(yu|xu) =
N (µyu |Σyu) for both classes yu ∈ {0, 1}. This means a training step is required
to obtain the mean vectors µyu , covariance matrices Σyu , and prior probabilities
p(yu) for yu ∈ {0, 1}.

The pairwise potentials penalize crossings of vessels with the same label,
or bifurcations of vessels with different labels. We define θuv(yu, yv) = γuv(1 −
δ(yu, yv)), where γuv := −1 if vessels u and v cross, γuv := 1 if vessel u bifurcates
from v or vice versa, and δ(yu, yv) := 1 if yu = yv and δ(yu, yv) := 0 otherwise.
This results in a utility of −λ for correct crossings and a penalty of λ for incorrect
bifurcations. Note that if one is able to determine a confidence measure for each
of the bifurcations and crossings, the method can be extended by using individual
weighting factors γuv that are a function of the confidence of a bifurcation’s or
crossing’s detection.

We arrive at the following problem-specific cost function

U(y) =
∑

u∈V
− ln p(yu|xu)

︸ ︷︷ ︸
local features

+λ
∑

(u,v)∈E
γuv(1− δ(yu, yv))

︸ ︷︷ ︸
contextual features

. (4)

2.2 Feature extraction and training

To find the unary and pairwise potential functions, two types of features are re-
quired. To determine the posterior PDF in the unary potentials, a feature vector
xu, representative of the differences between arteries and veins, is needed. To
determine the pairwise potentials, the method requires contextual information
from the tracking models.
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Fig. 1. (a) Example of a retinal vasculature tracking model. (b) Detail of a tracked
vessel and its profile measurement locations. (c) Average vessel intensity profile.

Local features The differences in color and central light reflex of arteries and
veins can be captured in transverse intensity profiles [4, 5, 13]. Like in previous
work [9], we found that these differences are largest in the red color channel.

For each pair of edge points on the tracked vessels, the intensity values on 21
points on a line between the edge points were extracted via cubic Hermite spline
interpolation of the red channel of the image. The number of points is constant,
independent of vessel width or resolution. This resulted in a number of intensity
profiles for each vessel the size of which depends on the length of the tracked
vessel. Prior to this, the red channel had been normalized using a lightness and
contrast (LC) normalization described in [14]. Additionally, each of the intensity
profiles was normalized to zero mean and unit standard deviation. The intensity
profiles of each vessel were averaged pointwise, resulting in one profile xu per
vessel (Figure 1). The intensity profiles of a training set were used to determine
p(yu|xu) by calculating the mean vector µyu , covariance matrix Σyu , and prior
PDF p(yu) for arteries and veins separately.

Contextual features The contextual features γuv can be directly extracted
from the tracking models made with the ETOS algorithm. The actual crossings
were detected by determining intersections of the tracked center lines of the
vessels. Bifurcations are detected during tracking itself [10].

2.3 Energy minimization

The energy function U(y) in (4) is a supermodular function of binary variables.
This supermodularity is caused by the fact that θuv(0, 0)+θuv(1, 1) ≤ θuv(1, 0)+
θuv(0, 1) does not hold in case of crossings. This means that the energy function
cannot be optimized using a standard graph cut algorithm. Therefore, we use the
Quadratic Pseudo-Boolean Optimization algorithm (QPBO) [15]. This algorithm
transforms supermodular problems into submodular problems that have a partial
solution. For every vertex u in the original problem, the QPBO problem has two
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Fig. 2. Example of a set of vessels and resulting QPBO graph. Vessels a and b cross and
need to be labeled oppositely, whereas vessels b and c belong to the same branch and
thus must receive the same label. Hence, in the QPBO graph, â and ā are connected
to b̄ and b̂, while b̂ and b̄ are connected to ĉ and c̄ respectively. These edges all have
weight �/2. The edge weights of the edges to s and t correspond to the unary terms
in equation (4). The cut shown is the result if the sum of weights of the black edges is
higher than the sum of the weights of the gray edges, and results in a labeling where
a is an artery and b and c are veins.

vertices û and ū. Each of these vertices is connected to a source s and a sink t
in a flow graph. The û vertices connect to s by an edge with weight ✓u(1,xu)
and to t by an edge with weight ✓u(0,xu). These edge weights correspond to the
unary terms in equation (4). The ū vertices connect to s by an edge with weight
✓u(0,xu) and to t by an edge with weight ✓u(1,xu). The pairwise terms are
modeled as edges between vertices. For two crossing vessels u and v the weights
are ✓ûv̄ = �/2 and ✓v̂ū = �/2, for bifurcating vessels u and v the weights are
✓ūv̄ = �/2 and ✓ûv̂ = �/2. All other pairwise weights are 0.

To find the minimum cut in the QPBO-version of the flow graph, we used the
Ford-Fulkerson algorithm [17]. After computing a minimum s� t cut (S, T ), the
final labels of the vertices are determined as follows: if û and ū are in opposite cut
sets, the original vertex u receives the label of û. If û and ū are in the same cut
set, an ‘unknown’ label yu = ; is attached to u. See Figure 2 for an exemplary
illustration.

3 Experiments

3.1 Ground truth data

We validated the method on a ground truth data set of 150 images. All images
were taken with a digital non-mydriatic white light fundus camera of the Nidek
brand, model AFC-230, with a 45� field of view and a resolution of 3744⇥ 3744.
For each of the images, a model of the vasculature was generated using the ETOS
algorithm [11], and corrected manually when necessary. The vessels were labeled
as arteries and veins through consensus of two graders. In total, the dataset
contains 3186 vessels, divided in 1693 arteries and 1493 veins.

Fig. 2. Example of a set of vessels and resulting QPBO graph. Vessels a and b cross and
need to be labeled oppositely, whereas vessels b and c belong to the same branch and
thus must receive the same label. Hence, in the QPBO graph, â and ā are connected
to b̄ and b̂, while b̂ and b̄ are connected to ĉ and c̄ respectively. These edges all have
weight λ/2. The edge weights of the edges to s and t correspond to the unary terms
in equation (4). The cut shown is the result if the sum of weights of the black edges is
higher than the sum of the weights of the gray edges, and results in a labeling where
a is an artery and b and c are veins.

vertices û and ū. Each of these vertices is connected to a source s and a sink t
in a flow graph. The û vertices connect to s by an edge with weight θu(1,xu)
and to t by an edge with weight θu(0,xu). These edge weights correspond to the
unary terms in equation (4). The ū vertices connect to s by an edge with weight
θu(0,xu) and to t by an edge with weight θu(1,xu). The pairwise terms are
modeled as edges between vertices. For two crossing vessels u and v the weights
are θûv̄ = λ/2 and θv̂ū = λ/2, for bifurcating vessels u and v the weights are
θūv̄ = λ/2 and θûv̂ = λ/2. All other pairwise weights are 0.

To find the minimum cut in the QPBO-version of the flow graph, we used the
Ford-Fulkerson algorithm [16]. After computing a minimum s− t cut (S, T ), the
final labels of the vertices are determined as follows: if û and ū are in opposite cut
sets, the original vertex u receives the label of û. If û and ū are in the same cut
set, an ‘unknown’ label yu = ∅ is attached to u. See Figure 2 for an illustration.

3 Experiments

3.1 Ground truth data

We validated the method on a ground truth data set of 150 images. All images
were taken with a digital non-mydriatic white light fundus camera of the Nidek
brand, model AFC-230, with a 45◦ field of view and a resolution of 3744× 3744.
For each of the images, a model of the vasculature was generated using the ETOS
algorithm [10], and corrected manually when necessary4. The vessels were labeled
as arteries and veins through consensus of two graders. In total, the dataset
contains 3186 vessels, divided in 1693 arteries and 1493 veins.

4 Data on the performance of the ETOS algorithm can be found in [10].
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Fig. 3. Classification ac-
curacy against the value
of λ for all vessels, and
the six biggest arteries and
veins found after classifica-
tion for all images (‘Big-
6’). For λ > 8 accuracy re-
mains constant.
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Fig. 4. Accuracies for each
image for λ = 8 against
λ = 0. A majority of 105
images (green) show an in-
crease in accuracy, with 12
images showing a decrease
(red) and 33 images show-
ing no change (blue).
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Fig. 5. Accuracy differ-
ence between using λ =
8 and λ = 0 against to-
tal number of bifurcations
and crossings. Each point
shows the average for im-
ages with that number of
bifurcations and crossings.

3.2 Method parameterization and validation

The energy function in Equation (4) contains one parameter λ which weights
the influence of unary and pairwise terms, and therefore of local and contextual
features. To determine the dependence of our method on this parameter, the
accuracies for classification for increasing values of λ was evaluated.

For the classification of the vessels in each of the images we computed a
confusion matrix for each value of λ. For each of the images, the other 149
images were used for training of the unary potential functions in a leave-one-out
cross validation. By summing the confusion matrices for all images, we achieved
a confusion matrix of the whole data set, and thus accuracy and sensitivity, for
each of the λ values.

By setting λ to zero, no contextual information is included at all. This setting
is used as a baseline, achieving a classification accuracy of 81.2% for all vessels,
and 91.8% for the six arteries and veins with highest caliber (the ‘Big-6’ arteries
and veins, see Table 1). Accuracy increased with increasing λ, to 94.0% for
the ‘Big-6’ arteries and veins, and to 88.0% for all vessels. This compares well
to accuracy levels acquired with methods in literature that were validated on
different data sets (87.6% [4], 85.5% [5], 88.3% [9], 88.8% [13]).

We evaluated the accuracy for values of λ up to 50, which is sufficient to let
the pairwise terms dominate the unary terms completely. At λ = 8, accuracy
stopped increasing, which is why this value is used in subsequent experiments
(Figure 3). We confirmed the significance of the improvement of using λ = 8
compared to using λ = 0 using McNemar’s test (χ2 = 150, p < 0.001).

In 105 out of 150 images the accuracy was higher for λ = 8 than for λ = 0
(Figure 4). In twelve images the accuracy did not improve. This is caused by
incorrect high posterior probabilities of a vessel that bifurcates from, or has a
crossing with, another vessel. As an example, consider the case of a crossing of
an artery vA and vein vV for which the posteriors p(xu|Artery) are 0.6 and 0.7
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Table 1. Comparison of accuracy and sensitivity for arteries and veins for λ = 0 and
λ = 8 (maximal contextual information), for vessels of different calibers, all vessels,
and the six biggest arteries and veins found in the classification. N is the number of
vessels in the category. For the ‘Big 6’ category the number N reflects how many of
the six required arteries and veins were found in the classification.

λ = 0 λ = 8

Sensitivity Sensitivity

Caliber N Accuracy Arteries Veins N Accuracy Arteries Veins

0 - 20 pixels 960 65.7% 64.4% 74.5% 960 78.2% 75.3% 86.9%
20 - 25 pixels 985 83.2% 82.2% 86.1% 985 89.1% 88.6% 90.4%
25 - 30 pixels 664 90.1% 89.3% 90.9% 664 94.1% 93.5% 94.9%
≥ 30 pixels 577 93.4% 85.0% 96.6% 577 95.3% 88.7% 97.8%

All vessels 3186 81.2% 76.4% 90.1% 3186 88.0% 84.5% 93.2%
‘Big 6’ 1704 91.8% 88.8% 95.1% 1797 94.0% 92.4% 95.8%

respectively. Based on the posterior probabilities, both would be classified as
arteries, but by the fact that they cross, they are classified as a vein and artery
respectively, since the penalties for classifying vV as a vein or classifying both
as arteries is higher than classifying vA as a vein.

Other errors are caused by incorrect local classifications. Table 1 shows that
overall veins are classified more accurately than arteries, which was seen before
by other authors [5, 9], and is likely caused by the fact that the smallest arteries
often look like veins and consequently are classified incorrectly.

To investigate which vessels benefit most from the contextual information, we
separated the vessels into groups based on caliber. We found that the accuracy
improves most for the smallest vessels (0-25 pixels in caliber) and less for the
larger vessels (above 25 pixels, see Table 1). Furthermore, we clearly see a positive
correlation of the accuracy with the total number of crossings and bifurcations,
which demonstrates the value of contextual features for classification (Figure 5).

4 Conclusion

In this work we propose a graph-based method to combine local and contex-
tual features in artery/vein classification of vessels in retinal images, which we
validated on a clinical dataset of 150 retinal images. As local features of the
vessels we use intensity profiles, and as contextual features we include restric-
tions imposed by bifurcations and crossings. The inclusion of contextual features
significantly improves the classification accuracy compared with using local fea-
tures alone. The classification accuracy of our method of 88.0% compares well
with previous methods. For the six arteries and veins with highest caliber we
obtain an accuracy of 94.0%. The classification of vessels with a lower caliber
benefits most from the contextual information. Because local information is less
reliable in these vessels, contextual information is essential.
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which is (partly) financed by the Netherlands Organisation for Scientific Re-
search (NWO). We thank the Maastricht University Medical Center for making
their images available.

References

1. Ikram, M.K., Ong, Y.T., Cheung, C.Y., Wong, T.Y.: Retinal vascular caliber mea-
surements: clinical significance, current knowledge and future perspectives. Oph-
talmologica 229(3) (2013) 125–36

2. Knudtson, M.D., Lee, K.E., Hubbard, L.D., Wong, T.Y., Klein, R., Klein, B.E.K.:
Revised formulas for summarizing retinal vessel diameters. Current eye research
27(3) (2003) 143–9

3. Kalitzeos, A.A., Lip, G.Y., Heitmar, R.: Retinal vessel tortuosity measures and
their applications. Experimental Eye Research 106 (2013) 40 – 46

4. Grisan, E., Ruggeri, A.: A divide et impera strategy for automatic classification
of retinal vessels into arteries and veins. In: IEEE EMBS. (2003) 890–893

5. Li, H., Hsu, W., Lee, M., Wang, H.: A piecewise Gaussian model for profiling and
differentiating retinal vessels. In: IEEE ICIP. (2003) I–1069–72

6. Niemeijer, M., Xu, X., Dumitrescu, A.V., Gupta, P., van Ginneken, B., Folk, J.C.,
Abramoff, M.D.: Automated measurement of the arteriolar-to-venular width ratio
in digital color fundus photographs. IEEE TMI 30(11) (2011) 1941–50

7. Rothaus, K., Jiang, X., Rhiem, P.: Separation of the retinal vascular graph in
arteries and veins based upon structural knowledge. Image and Vision Computing
27(7) (2009) 864–875

8. Joshi, V.S., Reinhardt, J.M., Garvin, M.K., Abramoff, M.D.: Automated method
for identification and artery-venous classification of vessel trees in retinal vessel
networks. PLoS ONE 9(2) (2014) e88061

9. Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic graph-based ap-
proach for artery/vein classification in retinal images. IEEE TIP 23(3) (2014)
1073–83

10. Bekkers, E., Duits, R., Berendschot, T., ter Haar Romeny, B.: A Multi-Orientation
Analysis Approach to Retinal Vessel Tracking. Journal of Mathematical Imaging
and Vision 49(3) (2014) 583–610

11. Perez, M., Highes, A., Stanton, A., Thorn, S., Chapman, N., Bharath, A., Parker,
K.: Retinal vascular tree morphology: a semi-automatic quantification. IEEE
TBME 49(8) (2002) 912–917

12. Al-Diri, B., Hunter, A., Steel, D., Habib, M.: Automated analysis of retinal vascular
network connectivity. Computerized Medical Imaging and Graphics 34(6) (2010)
462 – 470

13. Vazquez, S.G., Cancela, B., Barreira, N., Penedo, M.G., Saez, M.: On the Auto-
matic Computation of the Arterio-Venous Ratio in Retinal Images: Using Minimal
Paths for the Artery/Vein Classification. In: IEEE DICTA. (2010) 599–604

14. Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in
retinal images. Medical Image Analysis 9(3) (2005) 179–90

15. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts
- a review. IEEE PAMI 29(7) (July 2007) 1274–9

16. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8 (1956) 399–404

128 K. Eppenhof et al.


