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Abstract. We present a comprehensive and fully automatic glaucoma detection
approach that uses machine learning techniques over multiple informatics do-
mains, consisting of personal profile data, genetic data, and retinal image data.
This approach, referred to as MKLclm, enriches the feature set of the multiple
kernel learning (MKL) framework through the incorporation of classemes, which
represent the outputs of multiple class-specific classifiers trained from the data of
each informatics domain. We validate our MKLclm framework on a population-
based dataset consisting of 2258 subjects, achieving an AUC of 94.9% ± 1.7%
and a specificity of 88.5%±2.7% at 85% sensitivity, which is significantly better
than the current clinical standard of care which uses intraocular pressure (IOP)
for glaucoma detection. The experiments also demonstrate that MKLclm outper-
forms the standard SVM method using data from individual domains, as well as
the traditional MKL method, showing that this deeper integration of data from
different informatics domains can lead to significant gains in holistic glaucoma
diagnosis and screening.

1 Introduction

Glaucoma is a disease of the optic nerve which is one of the leading causes of blindness
worldwide. It is estimated to affect up to 80 million people by 2020 [1]. Based on a
recent survey by the World Health Organization, glaucoma is the second leading cause
of blindness, and it is considered the top cause of irreversible and permanent visual
impairment. In glaucoma, the degeneration of the retinal ganglion nerve cells results in
a gradual loss of sight inwards from the periphery of the visual field of view, leading
to the characteristic ‘tunnel-vision’ experienced in cases of advanced glaucoma. Due
to the lack of obvious visual symptoms in glaucoma, recent studies have reported that
more than 90% of glaucoma cases remain undetected in the population [2].

With the permanence of visual loss in glaucoma, there is a strong need to develop
models of disease prediction to detect the disease early to minimize vision loss. Broadly,
there are three types of data: personal profile data, genetic data, and imaging data. Pro-
file data, which includes both ocular measurements as well as non-ocular data such as
age, has been previously used to develop predictive models for glaucoma [3, 4]. Specif-
ically in [3], age, intraocular pressure (IOP), central corneal thickness, vertical cup to
disk ratio and visual field pattern parameters were used to obtain a five-year glauco-
ma risk. Similarly, perimetric measurements were used in the Kaplan-Meier model to
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estimate the probability of developing glaucoma in [4]. Besides personal profile data,
the human genome also contains a wealth of predictive information. With the large in-
crease in processing power for large scale data analysis, there has been renewed interest
to mine the expanse of data in genome-wide association studies to identify genetic risk
factors for disease prediction. Some of the recent studies for certain diseases have found
several genes [5] being associated with the development of glaucoma. Besides personal
profile data and genetic information, researchers also use imaging devices such as fun-
dus cameras to examine retina for glaucomatous changes. As structural glaucomatous
degeneration occurs before functional visual loss, a direct observation of retina provide
an opportunity to detect early stages of glaucoma. A number of works have been re-
ported for automatic glaucoma assessment in retinal image analysis, such as [6] which
presented a glaucoma risk index based on visual features extracted from retinal images.

Many methods have been developed for automatic glaucoma detection, but they
can only use data from the same source to train predictive models. How to effective-
ly integrate data from different informatics domains is not yet well studied. Recently,
researchers employed multiple kernel learning (MKL) techniques as a means to fuse
data from different domains for medical image classification. For example, Gál et al.
proposed to combine both visual features and meta-textual information from medical
images to determine their modality [15]. More recently, Liu et al. applied the traditional
MKL method to integrate data from the three informatics domains (i.e., personal data,
genome data, and retinal image data) for glaucoma detection [14].

Motivated by [14], we propose an improved MKL framework that effectively in-
corporates pre-learned classifiers (e.g., binary SVM classifiers) which can be leveraged
as useful priors for further boosting classification performance. Specifically, we con-
sider the outputs of pre-learned SVM classifiers on the data as additional features. The
prior knowledge represented by these classifiers is used to more deeply integrate the
information from different domains and also train a more effective prediction model
for glaucoma detection. Another contribution of our work is the design of a new visual
feature for retinal image representation, which will be shown to outperform the visual
feature used in [14]. This new visual feature in conjunction with the classifier-based
priors is shown to bring appreciable performance improvements to the MKL frame-
work, and has the potential to be applied not only to glaucoma detection, but also for
diagnosing other diseases that have indicators over different domains.

2 Comprehensive MKL-based Glaucoma Detection
In this work, we learn a predictive model for glaucoma detection by using multiple
informatics domains under the proposed MKLclm framework. As illustrated in Fig. 2,
our framework first trains several base SVM classifiers using different kernel functions
and parameters for each individual feature. Together with the pre-computed base ker-
nels using the original features, the decision values from these classifiers then serve as
additional features in training the final MKLclm classifier.

2.1 Feature representation of data from different domains
Following [14], we conducted a univariant analysis of all demographic and clinical
variables that compose the personal profile data. A total of 46 variables are then used as
a 46-dimensional vector for profile features. According to a recent genetics study [5],
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Fig. 1. Overview of the proposed MKLclm framework for glaucoma detection using multiple
informatics domains.

three single nucleotide polymorphism (SNP) markers (rs11024102 in PLEKHA7, rs-
3753841 in COL11A1 and rs1015213) were found to have significant associations with
glaucoma. In total, the study identified 178 relevant SNPs, which are used as genetic
features for glaucoma assessment in our work.

To represent image data, Liu et al. [14] modeled each retinal image as a 569-
dimensional vector consisting of the standard deviations of color and texture descrip-
tors within image blocks. This simple representation of local variances, however, lacks
clinical support as a discriminant feature for glaucoma detection. Unlike that, in this
work we extract a new image feature that is closely correlated to optic cup-to-disc ra-
tio (CDR), which is a major visual cue for glaucoma diagnosis in clinical practice [7].
Since CDR is costly to obtain by manual labeling, we instead incorporate features that
are indicative of its value. At present, disc segmentation can be computed reliably, but
cup segmentation remains a challenge because current automatic methods either lack
sufficient accuracy [9] or are time-consuming [8]. Inspired by the sliding window and
ranking-based automatic cup localization method in [8], histogram-based features in
sliding windows (which represent virtual cups) can be trained to estimate how close the
virtual cup is to the real one, and thus are correlated with the actual CDR. For efficiency,
we extract simplified histogram-based features from four virtual cups in the optic disc
automatically segmented using the level-set method in [9], with following steps:

1. Each optic disc is normalized to a uniform circle with a diameter of 256 pix-
els, with the cup and disc centers aligned. Virtual cups with CDR values ρ ∈
{0.2, 0.4, 0.6, 0.8} are then generated.

2. As in [8], histograms are obtained from the green channel with different bin num-
bers β ∈ {8, 16, 32, 64} such that each bin has an equal (or as equal as possible
due to quantization) number of pixels, giving equalized channels.

3. For each number of bins β and each virtual cup with CDR ρ, we form two types
of features: 1) an L1-normalized histogram of the virtual cup region; 2) an L1-
normalized histogram of the virtual rim (ı.e., non-cup) region within the disc;

4. The final image feature Ii is obtained by concatenating the two types of features
over the four CDR values and four bin numbers, which leads to a feature dimension
of |Ii| = 2× 4× (8 + 16 + 32 + 64) = 960.

Glaucoma Detection by Learning from Multiple Informatics Domains 19



Feature normalization In our framework, feature normalization is individually per-
formed for profile features, genetic features, and image features. Specifically, for each
feature dimension, the corresponding value is normalized to the range of [0, 1] in order
to avoid bias caused by magnitude differences among the feature dimensions.

2.2 Multiple kernel learning using classemes

Having enhanced interpretability over a single kernel, multiple kernel learning (MK-
L) [10] assumes that the final kernel is a linear combination of a set of base ker-
nels. Promising results of MKL have been shown in the literature [14, 15]. Motivat-
ed by [14], we propose an improved MKL framework to better integrate the afore-
mentioned three types of features from multiple informatics domains. Specifically, our
framework proposes to utilize the outputs of pre-learned class-specific classifiers, re-
ferred to as classemes in [13], to further improve performance for glaucoma detection.
The intuition for using classemes is that the glaucoma prediction of a patient x from
a pre-learned classifier fp basically describes how likely x has glaucoma. Thus, such
classemes provide a rich encoding of the informatics data and thus can be considered
as valuable prior information. Because of this use of classemes in the MKL framework,
we denote our method as MKLclm.

The goal of our work is to learn a binary MKLclm classifier by using multiple fea-
tures from different informatics domains for glaucoma detection. Suppose for each pa-

tient xi, we have M types of features xi = [x
{1}
i

>
, . . . ,x

{M}
i

>
]>, where x

{m}
i rep-

resents the m-th feature. Let us denote the training samples as {(xi, yi)|ni=1}, where
yi ∈ {1,−1} is the class label for which yi = 1 means a patient xi has glaucoma
and yi = −1 otherwise. We organize the training samples so that the first n+ sam-
ples are positive and the remaining n− are negative, where n = n+ + n−. We also
denote the set of pre-learned classifiers by {fp|Pp=1}, which are learned from standard
SVMs using the RBF kernels of different types of features as well as different kernel
parameters (see the experimental setup in Section 3.2 for more details). Moreover, for
each patient, we augment the set of original features xi by including the classemes
from the P pre-learned classifiers, which leads to the augmented feature representa-
tion zi = [xi

>, f>i ]>, where fi = [f1(xi), . . . , fP (xi)]
>. By introducing nonlinear

feature mapping functions {φm(·)|Mm=1} for x
{m}
i

1 and ϕ(·) for fi, we map zi into
ψ(zi) = [φ1(x

{1}
i )>, . . . , φM (x

{M}
i )>, ϕ(f)>]>. With the aforementioned notations,

we formulate the classifier for our classification problem as

f(zi) = w>ψ(zi) + b =
M∑

m=1

w>mφm(x
{m}
i ) + w>f ϕ(fi) + b, (1)

where w = [w>1 , . . . ,w
>
M ,w

>
f ]>, wm and wf are the feature weights for the m-th

feature and the classemes, respectively, and b is the bias term. Then the formulation of
MKLclm is as follows:

1 Without loss of generality and for simplicity, each feature x
{m}
i here is associated with one

feature mapping function φm(·). However, in the experiments of Section 3, we will use seven
multiple feature mappings (leading to seven multiple base kernels) for each x

{m}
i .
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s.t. yif(zi) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n, (3)
M∑

m=1

dm = 1, dm ≥ 0, m = 1, . . . ,M,

where d = [d1, . . . , dM ]>, dm controls the squared norm of wm [10], µ, θ > 0 are pre-
defined parameters which respectively regularize the complexity of wf and d, C > 0
is also a pre-defined parameter that balances the objective and empirical error, and ξi is
the slack variable for each training sample. Note that we normalize the empirical errors
of the positive and negative data in order to avoid the imbalance problem. We also note
that µ controls the influence of prior information in MKLclm. A larger µ will lead to a
smaller wf , which reduces the impact of prior information in MKLclm.

To solve (2), we first introduce a dual variable αi for each constraint in (3). Then
the dual form of (2) with respect to wm,wf , b and ξi can be expressed as

min
d

max
α

θ

2
‖d‖2 + 1>α− 1

2
(α ◦ y)>K̃(α ◦ y), (4)

s.t. α>y = 0, 0 ≤ αi ≤ C/n+, i = 1, . . . , n+;

0 ≤ αi ≤ C/n−, i = n+ + 1, . . . , n,

where the notation ◦ represents the element-wise product operator, α = [α1, . . . , αn]>,
y = [y1, . . . , yn]>, and K̃ ∈ Rn×n is the kernel matrix with elements k̃(zi, zj) =∑M
m=1 dmkm(x

{m}
i ,x

{m}
j ) + 1

µ · kf (fi, fj). Here km(·, ·) is the m-th base kernel func-

tion, which induces the nonlinear feature mapping φm(·) (i.e., km(x
{m}
i ,x

{m}
j ) =

φm(x
{m}
i )>φm(x

{m}
j )). And kf (·, ·) is also a kernel function, which induces ϕ(·) (i.e.,

kf (fi, fj) = ϕ(fi)
>ϕ(fj)) for classemes.

Similar to [10], we develop an algorithm to solve the optimization problem in (4)
by iteratively updating d and α. Due to space constraints, we only briefly describe
the proposed algorithm. First, by fixing d, we obtain a standard SVM problem and
solve it by using existing tools such as LIBSVM. Subsequently, we fix α and solve a
quadratic programming problem for d. We iterate the above procedures until the value
of the objective function in (4) converges. After obtaining the optimal d and α, we can
rewrite the decision function in (1) as follows:

f(z) =
n∑

i=1

αiyi

(
M∑

m=1

dmkm(x
{m}
i ,x{m}) +

1

µ

P∑

p=1

kf (fi, f)

)
+ b,

where z is the augmented feature of a test patient, x{m} is its m-th feature, and f =
[f1(x), . . . , fP (x)]> is a vector of its classemes.

3 Experiments
To assess the performance of the proposed framework using multiple informatics do-
mains, we compare results of seven settings that use different features and combina-
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tions: 1) profile features (P); 2) genetic features (G); 3) retinal image features (I); 4)
P+G; 5) P+I; 6) G+I; and 7) P+G+I. The notation ‘+’ means that data features from
multiple informatics domains are used for both the training and testing phases.

3.1 Dataset description

We use the Singapore Malay Eye Study (SiMES) dataset in the experiments. SiMES
is a population-based study conducted from 2004 to 2007 to assess the causes and risk
factors of blindness and visual impairment in the Singapore Malay community [2].
The database contains 2258 subjects each with complete personal profile data, genome
data and retinal fundus image data. In addition, diagnostic information of glaucoma is
available, and is used as the class label (i.e., +1 for glaucoma and -1 for normal) in our
experiments. Since IOP is clinically used for glaucoma detection, it is employed as a
baseline method in our experiments and removed from the personal profile data.

3.2 Experimental setup

Besides IOP, we also compare our proposed MKLclm with the standard SVM and
the traditional MKL presented in [14]. For all the methods, we use a nonlinear ra-
dial basis function (RBF) kernel, i.e., k(xi,xj) = exp(−γ‖xi − xj‖2), where we
set the kernel parameter as γ = 2σγ0, with γ0 set as the reciprocal of the average
squared distance between all pairs of training samples. In the experiments, σ is set as
{−3,−2,−1, 0, 1, 2, 3}, so that for each type of feature we have seven RBF kernels. For
the standard SVM, we train one SVM classifier by using one RBF kernel constructed
using one type of feature. For each of the aforementioned settings 1)–3), we obtain the
final SVM classifier as an average of the seven trained SVM classifiers; and for settings
4)–7), we average fourteen (or twenty-one) trained SVM classifiers obtained from two
(or three) types of corresponding features to get the final SVM classifier. For MKL and
our MKLclm, we construct a number of base kernels by using the RBF kernel with each
type of feature and seven kernel parameters. So we have seven base kernels for settings
1)–3), fourteen for settings 4)–6) and twenty-one for setting 7). Note that those base
kernels are exactly the same ones used to train each SVM classifier.

To evaluate different methods, balanced accuracy P̄ and the area under the ROC
(receiver operating characteristic) curve (AUC) are used as evaluation metrics, where
the ROC is plotted as a curve which shows the tradeoff between sensitivity P+ and
specificity P−. As the screening set point, we maintain a baseline specificity P− of 85%
to limit the rate of false negatives, and determine the corresponding balanced accuracy
P̄ of the various methods.

In the experiments, we randomly partition the dataset into training and testing sub-
sets which contain 80% and 20% of the 2258 subjects, respectively. For each machine
learning method, five-fold cross-validation is performed to automatically select the pa-
rametersC from {10−3, 10−2, 10−1, 1, 10, 102, 103} during the training phase. And the
final classifier of each method is obtained by training this method again using all the
training data together with the selected parameters found through cross-validation. For
fair and thorough evaluations of the different methods, we conduct ten tests with random
partitioning of the training and testing data. Finally, we report the means and standard
deviations of both AUC and balanced accuracy P̄ over the ten rounds of experiments
for each method.
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Table 1. Performance comparisons of different methods under different settings on the SiMES
dataset. The best results over all the settings are highlighted in boldface. Note that intraocular
pressure (IOP) is the glaucoma assessment method currently used in clinics. IOP only achieves
an AUC of 0.572±0.062 and a P̄ of 0.565±0.04.

SVM MKL MKLclm

Setting AUC P̄ AUC P̄ AUC P̄

1) P 0.634±0.054 0.547±0.036 0.615±0.05 0.522±0.02 0.621±0.05 0.532±0.03
2) G 0.922±0.022 0.835±0.041 0.923±0.02 0.842±0.05 0.922±0.02 0.832±0.05
3) I 0.815±0.031 0.727±0.057 0.809±0.03 0.730±0.03 0.814±0.03 0.740±0.04
4) P+G 0.852±0.048 0.757±0.065 0.916±0.025 0.830±0.050 0.926±0.024 0.840±0.047
5) P+I 0.816±0.030 0.715±0.049 0.816±0.026 0.730±0.044 0.822±0.029 0.727±0.045
6) G+I 0.925±0.021 0.822±0.048 0.935±0.020 0.850±0.037 0.945±0.017 0.872±0.028
7) P+G+I 0.913±0.025 0.832±0.031 0.933±0.019 0.847±0.034 0.949±0.017 0.885±0.027

3.3 Performance comparisons

Table 1 lists the means and standard deviations of both AUC and P̄ for each method
under the seven settings. From the results, the following observations can be made:

1. SVM, MKL [14] and our MKLclm generally perform much better than the current
clinical assessment method based on intraocular pressure (IOP) in terms of both
AUC and P̄ . This clearly demonstrates the potential for clinical usage of machine
learning methods using additional fundus image data and genome information.

2. When using individual features under settings 1)–3), SVM performs comparably or
even better than the two MKL-based methods. An explanation is that even though
the base kernels are different (using different kernel parameters), they are all con-
structed by using the same feature, which in return makes them intrinsically sim-
ilar. As a result, the MKL-based methods do not achieve better performance than
SVM. However, when using two or three types of features under settings 4)–7),
the MKL-based methods outperform SVM in almost all cases. It is because that the
three types of features are quite different in nature and are used in a complementary
manner in the MKL framework, which helps learn a better predictive model.

3. By utilizing classemes as prior information, our proposed MKLclm framework
achieves better performance than the MKL method [14] under almost all the set-
tings, which clearly demonstrates the effectiveness of our MKLclm in better inte-
grating the heterogeneous data from different domains through the seamless incor-
poration of classemes into the MKL-based framework. Using all the domains in
setting 7), MKLclm achieves the best result overall.

We also conduct one more experiment to compare the performance of our newly
developed image feature to that used in [14]. In this comparison, we train standard
SVMs with each image feature. Using our visual feature (see setting 3 in Table 1), SVM
performs much better than when using the visual feature in [14] which only achieves a
0.752±0.04 AUC and 0.642±0.04 P̄ .

4 Conclusion
To perform fully automatic and comprehensive glaucoma detection, we proposed an
improved framework called MKLclm to learn an effective predictive model by using
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multiple informatics domains containing data of different nature (i.e., personal profile
data, genetic data and retinal image data). Different from traditional MKL, we incorpo-
rate classemes (i.e., outputs of pre-learned SVM classifiers) into MKLclm and use them
as additional features to boost the classification performance of the predictive model.
Moreover, we developed a new visual feature for retinal image representation, and it
is demonstrated to perform better than the one used in [14]. MKLclm is validated by
extensive experiments conducted on the large population-based SiMES dataset, and its
strong performance demonstrates its ability to effectively integrate heterogeneous data
from different informatics domains.
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