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Abstract. We propose a robust and fully automatic method for the
analysis of vessel tortuosity. Our method does not rely on pre-segmentation
of vessels, but instead acts directly on retinal image data. The method
is based on theory of best-fit exponential curves in the roto-translation
group SE(2). We lift 2D images to 3D functions called orientation scores
by including an orientation dimension in the domain. In the extended
domain of positions and orientations (identified with SE(2)) we study
exponential curves, whose spatial projections have constant curvature.
By locally fitting such curves to data in orientation scores, via our new
iterative stabilizing refinement method, we are able to assign to each
location a curvature and confidence value. These values are then used
to define global tortuosity measures. The method is validated on syn-
thetic and retinal images. We show that the tortuosity measures can
serve as effective biomarkers for diabetes and different stages of diabetic
retinopathy.

Keywords: Retina, vessel tortuosity, biomarkers, diabetes, curvature,
orientation scores, roto-translation group

1 Introduction

Systemic diseases, such as diabetes, may cause quantifiable changes to the geom-
etry of the retinal microvasculature [1, 2]. One of the most relevant geometrical
features of the microvasculature is vessel tortuosity [2–5]. While for some geo-
metrical features (such as vessel calibre) there is a general consensus [1] on how
they are associated to several diseases. This is not the case for vessel tortuosity,
which makes it still a very relevant topic of research. E.g., in [3] a positive, and in
[4] a negative association of vessel tortuosity with progression towards diabetic
retinopathy (DR) is found. In this work, we present a novel robust and fully
automated method for the extraction of tortuosity measures, and show strong
positive associations of the measures with diabetes and progressive stages of DR.

Vessel tortuosity descriptors are typically computed via an extensive pipeline
(including manual interventions) of image pre-processing, segmentation, thinning
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and splitting of the vascular network, after which tortuosity values are computed
from the extracted vessel centerlines [2, 3, 5, 6]. In such pipelines, errors intro-
duced in each processing step may accumulate, and information might get lost
along the way. As an alternative, we propose a reduced pipeline that does not rely
on explicit segmentation of the blood vessels, but instead computes tortuosity
features directly from retinal image data.

The proposed method is based on theory of best exponential curve fits in
the roto-translation group SE(2), developed by Duits, Franken and Janssen [7–
9]. To this end, we lift 2D images to 3D functions called orientation scores by
including an orientation dimension [10]. In the extended domain of positions
and orientations (identified with SE(2)) we study so-called exponential curves,
whose curvatures are constant. By locally fitting exponential curves [8] to data
in orientation scores, we are able to assign to each location a curvature and
measurement-confidence value, which we use to define global tortuosity mea-
sures. Additionally, we improve the accuracy of best-exponential curve fits via a
novel refinement procedure, resulting in more accurate curvature estimations.

This article is structured as follows: Sec. 2 provides necessary prerequisites:
the notion of curves in the space of positions and orientations R2 o S1 (Sub-
sec. 2.1), theory on orientation scores (functions on this space) and on the com-
putation of best-exponential curve fits from these functions (Subsec. 2.2). In
Subsec. 2.3 we then introduce our tortuosity measures based on the aforemen-
tioned theory. In Sec. 3 we validate the accuracy of the curvature extraction
and associated confidence, and demonstrate the potential of using our tortuosity
measures as biomarkers in diabetes research. The article is concluded in Sec. 4.

Fig. 1: A: Two exponential curves γch and γcl in SE(2), with high and low
curvature respectively. The coefficients c = (cξ, cη, cθ)T of tangent vectors γ̇c(t),
expressed in the left invariant basis at location γc(t) are constant along the
exponential curves γc. This is emphasized in B and C, where one also observes
a steeper slope in θ-direction of the tangent vector γ̇ch compared to γ̇cl .
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2 Theory

2.1 Exponential Curves in SE(2)

The domain R2oS1 ≡ SE(2). The joint space of positions and orientations, with
elements (x, θ) ∈ R2oS1, is essentially the roto-translation group SE(2) of planar
translations and rotations, equipped with group product g ·g′ = (x, θ) · (x′, θ′) =
(Rθx

′ + x, θ + θ′) [9, ch. 2.1].
Curves and tangent vectors in SE(2). Planar curves γ2D(t) = (x(t), y(t))T ∈

R2 can be naturally lifted to curves γSE(2)(t) = (x(t), y(t), θ(t))T ∈ SE(2) in the
space of positions and orientations by considering the direction of the tangent
vector γ̇2D(t) as the third coordinate (θ(t) = arg(ẋ(t) + i ẏ(t))). Tangent vectors
of planar curves γ̇(t) = (ẋ(t), ẏ(t)) ∈ T (R2) are usually spanned by a global
basis {ex, ey}, with ex = (1, 0) and ey = (0, 1), i.e., T (R2) = span{ex, ey}. In
SE(2) we must work with a rotating frame of reference {eξ(g), eη(g), eθ(g)} =
{cos θex+sin θey,− sin θex+cos θey, eθ}, aligned with the orientation at each g ∈
SE(2), rather than with a global frame {ex, ey, eθ}. The tangent space at each
g is spanned by the left-invariant frame Tg(SE(2)) = span{eξ(g), eη(g), eθ(g)}.

Exponential curves in SE(2). An exponential curve is a curve whose tangent
vector components c = (cξ, cη, cθ)T expressed in the local left-invariant basis
{eξ, eη, eθ}|γc are constant, i.e., γ̇c(t) = cξeξ(γc(t)) + cηeη(γc(t)) + cθeθ(γc(t)),

for all t ∈ R. Exponential curves in SE(2) can be regarded as ”straight lines”
with respect to the curved geometry of SE(2). The exponential curve through

g with tangent c is given by γgc (t) = g · exp(t(
∑3
i=1 c

iAi)) with {A1, A2, A3} =
{eξ(0, 0), eη(0, 0), eθ(0, 0)} the basis for the Lie algebra. By direct computation
it follows that γgc is a helix with constant curvature and torsion in SE(2). For
details see [11, 8]. For intuition see Fig. 1. The explicit formulas for these expo-
nential curves are well-known (see e.g. [12, 8]). Here however, we do not need
these formulas as we directly deduce curvature of spatially projected curves
PR2γc (cf. Fig. 1) from vector c via

κ =
cθ sign(cξ)√
|cξ|2 + |cη|2

. (1)

See also [9, ch. 2.9] for more details.

2.2 Image Data Analyzed as Function on SE(2)

Orientation scores. We analyse image data in the form of orientation scores,
which are functions on SE(2). An orientation score U can be constructed from
an image f by means of correlation with some anisotropic wavelet ψ via

U(x, θ) = (Wψf)(x, θ) = (ψθ ? f)(x) =

∫

R2

ψ(R−1
θ (x̃− x))f(x̃)dx̃, (2)

where ψ ∈ L2(R2) is the correlation kernel, aligned with the x-axis, where Wψ

denotes the transformation between image f and orientation score U , and ? de-
notes correlation. The overline denotes complex conjugation, ψθ(x) = ψ(R−1

θ x)
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Fig. 2: Construction of an orientation score (OS) (middle panel) from an image
(left panel) via the OS-transformWψ. In the score a derivative frame {∂ξ, ∂η, ∂θ},
aligned with group elements (x, y, θ), is used for tangent vector (c∗) estimation of
exponential curves γc∗ . Using c∗, curvature and measurement confidence values
can be computed, which are encoded resp. in color and opacity in the right panel.

and Rθ is a counter clockwise rotation over angle θ. We choose cake wavelets
[10] for ψ. The Fourier transforms of cake wavelets uniformly cover the frequency
domain, and have thereby the advantage over other oriented wavelets (e.g. Ga-
bor wavelets) that they allow for a stable inverse transformation W∗ψ from the
orientation score back to the image. As such, they ensure that no data-evidence
is lost in the transformation. The left two panels of Fig. 2 show an image with
different curvature circles and the corresponding orientation score.

Best exponential curve fits. We compute curvature values directly from tan-
gent vectors (see Eq. (1)) of exponential curves that locally best fit the data.
In medical image analysis applications the direction of minimal principal curva-
ture, obtained via eigensystem analysis of the Hessian matrix, is often used in the
computation of vectors tangent to oriented (tubular) structures. This concept is
for example used in the Frangi vesselness filter [13]. Here we exploit a similar
approach, however, when considering the curved domain R2 o S1 we must pay
attention to the following:

1. Rather than using a global {∂x, ∂y, ∂θ} derivative frame (we use short hand
notation ∂i = ∂

∂i ) we must take into consideration the curved geometry of
the domain, and compute the Hessian matrix via left-invariant derivatives:

HU = Mµ−2




∂2
ξU ∂ξ∂ηU ∂θ∂ξU

∂ξ∂ηU ∂2
ηU ∂θ∂ηU

∂ξ∂θU ∂η∂θU ∂2
θU


Mµ−2 , (3)

with {∂ξ, ∂η, ∂θ} = {cos θ∂x + sin θ∂y,− sin θ∂x + cos θ∂y, ∂θ} , and with
Mµ = diag(µ, µ, 1). Here parameter µ, with unit 1/length, is introduced to
deal with the different physical dimensions in domain R2 o S1 [8, 9].

2. Since left-invariant derivatives are non-commutative, e.g. ∂θ∂ξU 6= ∂ξ∂θU ,
the Hessian matrix HU is not symmetric. In order to obtain real-valued
eigenvalues of a dimensionless matrix, we symmetrize the Hessian matrix
via HµU = Mµ(HU)TMµ2(HU)Mµ, and perform eigenanalysis on HµU .
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Eigenvector Mµc∗ with lowest eigenvalue of the dimensionless (µ-scaled) matrix
HµU does not give the minimal principal curvature direction, but rather provides
the solution to the following optimization problem [8]:

c∗(g) = arg min
c∈R3,‖c‖µ=1

{∥∥∥∥
d

dt
(∇U(γgc (t)))

∣∣∣∣
t=0

∥∥∥∥
2

µ

}
, (4)

with left-invariant gradient ∇U = Mµ−2(∂ξU, ∂ηU, ∂θU)T and ‖c‖2µ = µ2|cξ|2 +

µ2|cη|2 + |cθ|2. Intuitively speaking, c∗ gives the tangent vector components of
the exponential curve γgc∗(t), starting at position g, along which the left-invariant
gradient has fewest variations (Fig. 2). Alternatively, in work by van Ginkel [14],
tangent estimation was done based on the structure tensor. A full overview of
exponential curve fit models, with 3D extensions, can be found in [8].

2.3 Curvature, Confidence and Global Tortuosity Measures

In our implementation we use Gaussian derivatives to compute the Hessian ma-
trix, i.e., in Eq. (3) we substitute U ← Gσs,σo ∗U , with Gσs,σo(x, θ) a Gaussian
kernel with spatial isotropic scale 1

2σ
2
s , and orientation scale 1

2σ
2
o . For each tan-

gent component c∗(g) of the best exponential curve fit at location g, we compute
a curvature value κ(g) directly via Eq. (1). For each location we also determine
a confidence measure s(g) based on blob detection via the Laplacian computed
in the plane orthogonal to the tangent direction c∗(g) via

s(g) = (S(U))(g) = (−∆oU(g))+ =
(
−(eo1(g))TMµ2HU(g)Mµ2eo1(g)− (eo2(g))TMµ2HU(g)Mµ2eo2(g)

)
+
, (5)

where (v)+ = max{v, 0}, and Mµeo1(g) and Mµeo2(g) are two eigenvectors of
HµU orthonormal to Mµc∗(g) [9, ch. 5.3]. Improved accuracy of the confidence
and curvature measurements is achieved via the following stabilizing refinement
scheme:

sn+1 = S(sn), with s1 = S(U), κn+1 = K(sn), with κ1 = K(U), (6)

where we denote the computation of the confidence map s from input volume U
(using Equations (3)-(5)) with S(U), and the computation of curvature κ (using

Equations (3),(4) and (1)) with (K(U))(g) = c(g)θ sign(c(g)ξ)√
|c(g)ξ|2+|c(g)η|2

. From the cur-

vature and measurement confidence functions we compute the following global
tortuosity features:

µ|κ| =
1

stotal

∫ ∞

−∞

∫ π

0

|κ(x, θ)|s(x, θ)dxdθ (7a)

σ|κ| =

√
1

stotal

∫ ∞

−∞

∫ π

0

(|κ(x, θ)| − µ|κ|)2s(x, θ)dxdθ, (7b)

with stotal =
∫∞
−∞

∫ π
0
s(x, θ)dxdθ. Features µ|κ| and σ|κ| give respectively the

weighted mean and standard deviation of absolute curvatures.
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3 Validation and Application to Clinical Data

The scales σs = 3 and σo = π
18 are fixed in all experiments, and are chosen as

to best match the cross-sectional scales of vessels in the orientation score (Sub-
sec. 2.3). We set µ = σo

σs
, and sampled the orientation score with 18 orientations.

Validation. Our method was validated on two synthetic images (201px by
201px) with Gaussian white noise (SNR=1): One image composed of three cir-
cles with radii of 50px, 70px and 90px; One image composed of three crossing
Euler spirals. The curvatures computed with our method (third and fourth col-
umn Fig. 3), with n = 1 and n = 10 refinement iterations (Eq. (6)), were
compared against the ground truth (second column Fig. 3). In the curvature
maps, curvature is encoded with color and confidence with opacity (see e.g. also
Fig. 2). Visual comparison shows a remarkable agreement between our method
and the ground truth, and we observe improved precision of both the confidence
and curvature measurements with an increasing number of refinement iterations
n. This is also confirmed by the comparison of curvature measurements against
the ground truth via scatter plots (most right two figures in Fig. 3). The root
mean squared error of |κ| was reduced from 0.0138 for n = 1 to 0.0024 for n = 10.

Application to clinical data. Tortuosity measures µ|κ| and σ|κ| were computed
on images of two publicly available databases: 1) the high resolution fundus
(HRF) database [15], consisting of 15 images of healthy controls, and 15 images of
diabetes patients; 2) the MESSIDOR database [16], consisting of 1200 images of
diabetes patients which are graded for diabetic retinopathy: R0 (no retinopathy),
R1, R2 and R3 (severe retinopathy). All images are made with 45 degree field
of view (FOV) cameras, however with varying image resolutions. In order to
have approximately the same physical pixel size in all images, they are cropped
and resized such that the FOV area spans a width of 1024px. Curvature and
confidence measures were computed with n = 3 refinement iterations.

Fig. 4 shows a selection of results. Fig. 5 and Tab. 1 show the distribution
of feature values for different subgroups of the HRF and MESSIDOR database.
Based on a Mann-Whitney U test (p-values reported in Tab. 1) we conclude that
all subgroups show a significant increase in µ|κ| and σ|κ| in comparison to the
corresponding base groups (healthy for HRF, and R0 for MESSIDOR).

We also observe that our method detects microbleeds and hemorrhages as
high curvature regions (Fig. 4). While this was not our intention, it is a very wel-
come property when using features µ|κ| and σ|κ| as biomarkers for DR. However,
for research dedicated to the retinal vasculature one only wants to analyse blood
vessels. We plan to address this feature in future work via the construction of
vessel specific confidence measures (e.g. vesselness in orientation scores [13, 8]).

4 Conclusion

We developed new vessel tortuosity descriptors based on curvature estimations
from best exponential curve fits in orientation scores. Furthermore, a novel re-
finement scheme was presented for more accurate curvature and confidence mea-
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Fig. 3: From left to right: input image (SNR=1), ground truth color-coded cur-
vature map, measured curvature map with resp. n = 1 and n = 10 refinements,
scatter plot of ground truth vs measured curvatures for resp. n = 1 and n = 10.

Fig. 4: Results on three images of the MESSIDOR database. Measured absolute
curvature |κ| encoded in color, and confidence s encoded with opacity, overlain
on the original image, together with the histogram of measured |κ| values.

Fig. 5: Box-and-whisker plots of
tortuosity measures µ|κ| and
σ|κ| in subgroups of the HRF
and MESSIDOR database.

Table 1: Tortuosity measures µ|κ| and σ|κ| in
the HRF and MESSIDOR database.

Subgroup Mean ± (STD)
µ|κ| (10−2) σ|κ| (10−2)

———————— HRF ————————
Healthy 1.372 ± (0.069) 1.796 ± (0.072)
Diabetic 1.521 ± (0.130) 2.073 ± (0.185)

p-valuea < 0.001 < 0.001
——————– MESSIDOR ——————

R0 1.624 ± (0.120) 2.333 ± (0.134)
R1 1.657 ± (0.124) 2.365 ± (0.131)

p-valueb 0.007 0.020
R2 1.698 ± (0.122) 2.436 ± (0.144)

p-valueb < 0.001 < 0.001
R3 1.795 ± (0.160) 2.674 ± (0.235)

p-valueb < 0.001 < 0.001
a Compared to Healthy.
b Compared to R0.
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sures. Validation on synthetic images showed high accuracy of our curvature ex-
traction approach. Application to clinical retinal image datasets showed strong
positive associations of the proposed tortuosity descriptors with diabetes and
different stages of diabetic retinopathy (DR). As such, we see high potential of
the method to be used in a screening setting for diabetes and DR detection.
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