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Abstract. In this work, we present a multimodal multiresolution graph-
based method to segment the top surface of the retina called the inter-
nal limiting membrane (ILM) within optic-nerve-head-centered spectral-
domain optical coherence tomography (SD-OCT) volumes. Having a pre-
cise ILM surface is crucial as this surface is utilized for measuring several
structural parameters such as Bruch’s membrane opening-minimum rim
width (BMO-MRW) and cup volume. The proposed method addresses
the common current segmentation errors due to the presence of retinal
blood vessels, deep cupping, or a very steep slope of the ILM. In order
to resolve these issues, the volume is resampled using a set of gradient
vector flow (GVF) based columns. The GVF field is computed according
to an initial surface segmentation which is obtained through a multires-
olution framework. The retinal blood vessel information (obtained from
corresponding registered fundus photographs) along with shape prior in-
formation are incorporated in a graph-theoretic approach to compute the
ILM segmentation. The method is tested on the SD-OCT volumes from
44 glaucoma subjects and significantly smaller errors were obtained than
that from current approaches.

1 Introduction

The internal limiting membrane (ILM) is the first intraretinal surface and is
utilized for measuring several structural parameters such as Bruch’s membrane
opening-minimum rim width (BMO-MRW), total retinal thickness and cup vol-
ume. For example, the BMO-MRW, which is measured as the minimum Eu-
clidean distance between the BMO and the ILM surface, is being recognized as
a more sensitive metric for the diagnosis of glaucoma than traditional 2D met-
rics [1]. Furthermore, having a precise ILM surface segmentation is crucial as it
plays an important role in extracting different features from SD-OCT volumes
in approaches that utilize machine learning techniques for segmenting different
retinal structures such as retinal blood vessels, optic disc, and optic cup [2–4].

However, precisely segmenting the ILM surface in optic nerve head (ONH)-
centered OCT volumes, as needed for computing parameters such as the BMO-
MRW of glaucoma patients, can be a challenging task. Since glaucoma patients
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typically have deeper cups, in order to be able to follow the rapid changes in the
shape of the ONH, steep slopes must be allowed in the ILM surface. Many current
graph-based segmentation approaches [5, 2] (often initially designed to segment
the intraretinal layers of the macula or the peripapillary region surrounding the
ONH) cannot catch the deep, steeply sloped cups due to the fact that each A-scan
corresponds to a column in the graph construction and the ILM surface is allowed
to intersect with each column only once. In patients with larger and deeper
cups, in order to be able to segment the ILM surface precisely, the segmentation
must intersect with each A-scan multiple times (Fig. 1(a)). Therefore, the choice
of method for building columns in the graph construction is important. The
presence of large retinal blood vessels also makes a precise segmentation of the
ILM at the ONH challenging as the blood vessels often block the underlying
ILM and cause current segmentation approaches to include blood vessels and
surrounding gaps as part of the ILM surface (Fig. 1(b)).
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Fig. 1. Examples of ILM surface segmentation errors (shown with the arrows) of prior
work. (a) Errors due to the steep slopes as well as low signal strength. (b) Errors due
to the presence of blood vessels and resulting errors in computing cup volume and
BMO-MRW due to the incorrect ILM segmentation. The orange dashed line is the BM
reference surface, red lines indicate segmentation results using the approach of Lee et
al. [2] and the yellow dashed lines indicate the desired segmentation results.

In order to resolve these segmentation issues, we present a multimodal graph-
theoretic approach that is capable of dealing with deep cupping as well as retinal
blood vessels. To allow for steep and deep cupping, a new set of equally spaced
columns along the normals of the ILM surface are utilized to resample the OCT
volume. Since the columns in the graph construction must be non-overlapping
(otherwise it may lead to a self-intersecting surface segmentation), we used the
direction of the gradient vector flow (GVF) field [6, 7] to construct the new non-
overlapping columns. As opposed to the original ILM surface, the ILM surface
in the resampled volume changes very smoothly, hence, we incorporate this prior
shape information in the graph-theoretic approach [8]. The GVF-based columns
are computed utilizing an initial ILM segmentation which is obtained through
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a multiscale process. Furthermore, in order to compensate for the effect of the
blood vessels, the vessel mask from registered fundus photographs is used to
correct the initial segmentation as well as modify the cost function that is used
in the graph-based segmentation.

2 Methods

2.1 Preprocessing and Initialization

The flowchart of the proposed method is shown in Fig. 2. As part of the prepro-
cessing, the corresponding fundus photographs are registered to the 2D SD-OCT
projection image [2] using an ICP-based approach [9]. Because the retinal vessels
inside the ONH are more visible in fundus photographs, the retinal blood vessels
are segmented from the fundus photographs [10] and mapped to the SD-OCT
volumes. Additionally, the SD-OCT volume (x × y × z) is transferred to the
radial domain (r× θ× z) with angular resolution of one degree (180 B-scans) to
allow for a more consistent shape of the ILM across all slices.

OCT Volume
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Fig. 2. Flowchart of proposed algorithm.

The initialization that is used for computing the gradient vector flow field
is obtained through a multiresolution process. Since this step is only used for
computing the GVF columns, here, we use a simple but reasonably accurate
gradient-based peak detection method. The volumes are downsampled (by 8, 4,
and 2) to three lower resolutions and a 3D Gaussian derivative filter identifies the
intensity transitions from dark-to-bright (with high responses at the ILM sur-
face). The response of the 3D Gaussian filter in the highest resolution, E(r, θ, z),
will be used as part of the cost function computation of the graph-theoretic ap-
proach in section 2.3. The peak detector looks for the first dominant peak from
the top of each A-scan which belongs to the ILM surface. The searching interval
in the next higher resolution at each A-scan is defined by the location of the
peak in the previous lower resolution (the search interval for the lowest resolu-
tion includes the entire A-scan). The advantage of obtaining the initialization
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through a multiresolution process is that first, by downsampling the volumes, the
speckle noise of the images is significantly reduced which helps the peak detector
not be distracted by noise. Second, constraining the possible surface locations
in subsequent resolutions helps avoid finding edges due to other surfaces.

2.2 Gradient Vector Flow Computation

In order to be able to follow the steep surfaces in cases of deep cupping, we use
a set of equally spaced non-overlapping columns along the normals of the initial
segmentation to resample the volume. The new columns are computed based
on the direction of the GVF field and are suitable to be utilized for graph con-
struction as GVF guarantees non-overlapping columns. Consider an SD-OCT
volume in the radial domain I(r, θ, z). GVF is the vector field V (r, θ, z) =
[u(r, θ, z), v(r, θ, z), w(r, θ, z)] that minimizes the energy function E [6]:

E =

∫ ∫ ∫
µ|∇V |2 + |∇I|2|V −∇I|2drdθdz , (1)

where µ is the regularization parameter. Due to the smooth shape of ONH, µ
was not a sensitive parameter for computing GVF field and was set empirically
to 0.02. The vector field in Eq. 1 can be found by solving the following Euler
equations:

µ∇2u− (u− Ir)|∇I|2 = 0 ,

µ∇2v − (v − Iθ)|∇I|2 = 0 ,

µ∇2w − (w − Iz)|∇I|2 = 0 ,

(2)

where ∇I = (Ir, Iθ, Iz) and Ir, Iθ, and Iz are the derivatives in r, θ, and z
directions, respectively. Therefore, in order to compute the appropriate GVF
field we need to have an initial vector field, ∇I, with high gradient at the ini-
tial segmentation. Before computing the GVF field, in order to deal with the
effect of blood vessels, the initial segmentation is corrected for the presence of
retinal blood vessels by using 3D interpolation at the blood vessel locations. If
Sinitial(r, θ) represents the blood-vessel-corrected initial segmentation, the initial
vector field, ∇I, is derived from the following 3D binary function I(r, θ, z):

I(r, θ, z) =

{
0, Sinitial > z
1, Sinitial < z

. (3)

Starting from a point on the initial surface Sinitial(r, θ), the GVF-based
columns are built by following the gradient flow. In order to find the coordi-
nates of the next point on the column, the direction of the normalized gradient
vectors in the neighborhood of the current point {V i/|V i| | i ∈ Nc}, is interpo-
lated to find the resultant direction V R. In order to avoid sampling artifacts, at
each point, we take a small step s (which must be smaller than half of the dis-
tance between two voxels in the volume) in the direction of the resultant vector.
The columns are built by continuously moving in the direction of the gradient
flow at both sides of the initial surface for the desired length of the columns (100
in this study) (Fig. 2).
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2.3 Graph Construction and Cost Function Computation

The GVF-based columns computed in section 2.2 are utilized to resample the
OCT volume and they also serve as the columns in the graph construction.
Since the GVF-based columns are along the normals of the initial segmenta-
tion, the ILM surface in the resampled volume is much smoother than the ILM
surface before volume resampling. We benefit from this prior shape information
to deal with the issue of presence of blood vessels. Here, we use the general
graph-theoretic method proposed in [5, 8]. Consider a volumetric image in the
resampled volume described as I(i, j, k) with dimensions I × J × K, and the
ILM surface S can be defined as a function S(i, j) that maps each (i, j) pair
to its corresponding k value. The surface S intersects with only one voxel of
each GVF-based column in the resampled domain, parallel to the k–axis and
spans the entire i × j domain. The smoothness constraint represents the maxi-
mum distance allowed in i–direction ∆i and in j–direction ∆j . In other words,
if I(i, j, k1) and I(i + 1, j, k2) are two adjacent voxels on the surface S in the
i–direction then |k1 − k2| ≤ ∆i. Similarly, for two adjacent voxel on the surface
S in the j–direction (I(i, j, k1) and I(i, j + 1, k2)) we have |k1 − k2| ≤ ∆j .

In order to incorporate the shape prior information, in addition to hard
smoothness constraints, the deviation from the expected shape inside the allowed
constraints is penalized [8]. A convex function f(h) penalizes the cost of the
surface set if the change of the surface is deviated from the expected shape.
Specifically, for any pair of neighboring columns (identified by Nc) p = (i1, j1)
and q = (i2, j2) on surface S(i, j), if the expected shape change of surface S
between (p, q) is m(i1,j1),(i2,j2) the cost of the shape term can be written as:

Cshape =
∑

{(i1,j1),(i2,j2)∈Nc}
f(S(i1, j1)− S(i2, j2)−m(i1,j1),(i2,j2)). (4)

Here,Nc indicates the neighboring relationship and m(i1,j1),(i2,j2) = 0 as since we
resampled the volume along the normals of the initial segmentation, we expect
to have very smooth ILM surface in the resampled volume. In addition, the
penalizing convex function f used here is a quadratic function.

As part of the total cost function of the ILM surface in the resampled volume,
CS , we use an edge-based cost function called the on-surface cost function [5]
which reflects the unlikelihood of a voxel being located on a specific surface.
At the vessel locations, we want to rely more on the contextual and expected
shape information as well as the feasibility constraints than on the on-surface
cost function. Therefore, using the vessel information from segmented fundus
photographs, we modify the cost function values at the blood vessel locations.
Hence, the on-surface cost function can be expressed as:

Cedge =
∑

{(i,j,k)|k=S(i,j)}
w(i, j)É(i, j, k) , (5)

where w(i, j) controls the modification of the cost function at the blood vessel
locations. Here, we simply lower the weights of the blood vessel locations to be
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one-third of that of non-vessel locations. É(i, j, k) is computed by resampling the
vessel-corrected inverted response of the 3D Gaussian derivative filter E(r, θ, z)
computed in section 2.1 using the GVF-based columns computed in section 2.2.
The inversion is due to the fact that the on-surface cost function reflects the un-
likelihood of a voxel being located on a specific surface; therefore, the intensities
of E(r, θ, z) must be normalized and inverted. The total cost of finding the ILM
surface S in the resampled volume can be written as follows:

CS = Cedge + αCshape. (6)

The coefficient α was set to 0.85. The optimal surface can be found by computing
the max–flow/min–cut in the arc-weighted graph as in [8]. In the end, the ILM
segmentation is transferred back to the radial domain.

3 Experiments and Results

The dataset includes 44 optic nerve head-centered SD-OCT scans (from a 6mm
× 6mm × 2mm region which contained 200 × 200 × 1024 voxels) obtained
from 44 patients with varying stages of glaucoma using a Cirrus (Carl Zeiss
Meditec, Inc., Dublin, CA) SD-OCT scanner. As previously mentioned, each
volume is resampled to the radial domain. The reference standard was obtained
by randomly selecting two radial slices from each volume and performing the
manual delineation of the ILM surface by an expert. The metrics used to gauge
the accuracy of the segmentation results consisted of the signed and unsigned
border positioning errors calculated in the radial domain. The unsigned border
positioning error was calculated by averaging the distances between all surface
points (on two randomly selected slices) from the reference standard and the
corresponding closest points from the segmentation result. The signed border
positioning error was similarly calculated but the signs of the distances were
retained. If the algorithm’s surface point was above the surface point of the
reference standard, the sign was considered positive. Additionally, we compared
the segmentation accuracies of the initialization used in the proposed method as
well as the one proposed by Lee et al. [2].

Fig. 3 shows two example ILM segmentations on a single radial slice from the
entire volume. The quantitative evaluations are provided in Table 3. The pro-
posed method had significantly smaller signed and unsigned border positioning
errors than the initialization and Lee et al. segmentations (p-value < 0.05). The
proposed method improved the average unsigned border positioning error of Lee
et al. method and the initialization by 47.95% and 68.09%, respectively. Since
the volumetric ground truth wasn’t available, a direct cup-volume comparison
was not feasible; however, Fig. 3(b) shows a failure of the Lee et al. method in
a case with deep cupping which results in underestimating the cup volume.

4 Discussion and Conclusion

We have presented a multimodal graph-theoretic approach for segmenting the
internal limiting membrane in optic-nerve-head-centered OCT volumes of glau-
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(a) (b)

Fig. 3. Example results on the ONH portion of two slices from two volumes (only the
ONH portion shown for better visibility). Red is the reference standard, green is the
proposed algorithm and dashed cyan is Lee et al. [2] results. (a) Shows the effect of the
presence of blood vessels and (b) shows an example of deep cupping.

Table 1. Average signed and unsigned border positioning
error (Mean ± SD in µm).

Methods Unsigned Signed

Initialization 20.12 ± 10.36 7.23 ± 4.38
Lee et al. [2] 13.68 ± 7.12 5.21 ± 3.45
Proposed method 7.05± 3.43 -2.07±1.62

coma patients. The proposed method addresses the segmentation errors of cur-
rent approaches [2] due to the presence of the blood vessels and existing deep
cupping and steep slopes in the ILM surface. The blood vessels were segmented
from the corresponding registered fundus photographs and utilized to correct
the multiscale initial segmentation and to modify the cost function used in the
graph-theoretic approach at the vessel locations. The corrected initialization was
then used in the computation of the non-overlapping GVF-based columns along
the normals of the initial surface. The radial OCT volume was resampled us-
ing GVF-based columns such that the ILM surface converts to a very smooth
surface. The expected shape of the ILM surface was incorporated in the total
cost of the ILM surface respect to which the optimal surface was found using
a graph-theoretic approach. While Lang et al. [11] showed the advantages of
reformatting the macular OCT volume for purpose of intraretinal layer segmen-
tation and GVF-based columns have been previously proposed for constructing
the graph in other applications [7], this work presents a new framework for re-
formatting the OCT volumes using GVF-based columns in order to be able to
segment the ILM at the ONH precisely. Furthermore, our use of a multimodal
approach for the graph-construction and cost function design for use in the 3D
graph-based approach that allows for incorporation of shape priors [8] is gener-
ally novel as well.
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Having a precise ILM segmentation is particularly important for computing
modern glaucomatous parameters such as the BMO-MRW. However, in addition
to allowing for a more precise ILM segmentation for ophthalmic applications, as
in this work, it is expected that other application domains would benefit from a
multimodal graph-construction and cost-function design approach.
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