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Abstract. Fundus retinal imaging is widely used in the diagnosis and
management of eye disease. Blur commonly occurs in the acquisition
and when it is severe the resulting loss of resolution hampers accurate
clinical assessment. In this paper, we present a new technique to ad-
dress this challenging problem. We make use of implicitly constrained
image deblurring, which is known to provide improved results over un-
constrained and explicitly constrained methods, and build this into a
multi-channel variational framework for parametric deblurring. We pro-
pose a new method for automatically selecting the regularisation param-
eter in the absence of the true (sharp) image using vessel segmentation.
We then modify the model to include a regularisation coefficient function
which is dependent on an available image mask in order to avoid poten-
tial inaccuracies caused by the addition of artificial masks. We present
experimental results to demonstrate the effectiveness of our new method.

Keywords: Semi-blind deconvolution, regularisation parameter selec-
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1 Introduction

Fundus retinal imaging is widely used in the diagnosis and management of eye
disease, such as diabetic retinopathy and age-related macular degeneration. Blur
commonly occurs in the acquisition due to various factors such as media opacity,
refractive errors and involuntary eye movement of patients. When blur is se-
vere, the resulting loss of resolution hampers accurate clinical assessment, which
remains a major challenge for early disease detection, accurate diagnosis and
outcome monitoring. In an existing program of diabetic retinopathy screening,
approximately 5% of the images are too blurred for assessment. This necessitates
the development of effective image deconvolution techniques. As a mathematical
consideration, we model the problem of blur as a convolution [κ∗u](x) of a sharp
image u which we wish to recover and a blur function κ. We also consider the
presence of noise which makes this an ill-posed and challenging problem.
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Deconvolution problems may be classed as: 1) non-blind in the case of known
blur, in which case the image is to be recovered; 2) blind in the case of unknown
blur, which involves approximation of the unknown blur function; 3) semi-blind
which includes problems where the blur function may be assumed to belong to
a class of parametric functions.

In this paper, we develop a method for semi-blind deconvolution using implic-
itly constrained deblurring. Implicitly constrained deblurring methods are known
to offer improved results over unconstrained and explicitly constrained methods,
which typically involve thresholding. This new method allows for restoring im-
ages from out of focus blur degradation quickly by reducing the problem of
identifying a large number of unknowns to one of estimating a few parameters.
We also address the issue of deblurring given artificial masks surrounding the
field of view which affect the quality of the restored image. We introduce a reg-
ularisation coefficient function which increases regularisation in these regions,
thus reducing influence in the deconvolution problem. The selection of optimal
regularisation parameters is an important consideration. For retinal images, we
introduce a method of determining the regularisation parameter automatically
by making use of vessel maps. The main contributions of this paper are:
1. to incorporate constraints implicitly into a parametric framework,
2. to introduce a regularisation coefficient function to allow for artificial masks,
3. to develop a method for selecting the degree of regularisation automatically.

This paper is organised as follows. In §2, we introduce some relevant image
deconvolution techniques. In §3, we present the new model proposed in this
paper. In §4, we show experimental results and in §5, we conclude this work.

2 Image Deconvolution for Colour Fundus Imaging

There exist many techniques for recovering an image from blur degradation such
as that presented in [7]. In [3], the authors improved on [7] by proposing a total
variation (TV) functional (1) due to its ability to recover edges and an alternate
minimisation scheme which aims to find functions u and κ which minimise

J (u, κ) ≡ 1

2

∫

Ω

(κ ∗ u− z)2 dx + α1

∫

Ω

|∇u|β1
dx + α2

∫

Ω

|∇κ|β2
dx (1)

where ∗ denotes convolution, x = (x, y) for a 2-dimensional image, α1 and α2

are small positive parameters which measure the trade-off between data fitting
and smoothness, and |f |β =

√
|f |2 + β is a smooth approximation to TV reg-

ularisation where β is a small parameter used to avoid division by zero in the
resulting Euler-Lagrange (EL) equations. In order to minimise the functional,
we derive the first order optimality conditions obtained from the derivatives of
J with respect to u and κ and solve them iteratively.

While unconstrained TV deblurring provides good results, the restored im-
age may contain values significantly outside of the boundary of the intensity
range meaning that it must be projected back onto the correct range. This is
typically done in a naive way which can lead to a significant drop in the quality
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of the recovered image [2]. To address this, we implement a model for implicitly
constrained deblurring which is known to provide a better result [4].

We introduce a transform of the image given by τa(ψ) which has a range
contained in C ⊆ Rm×n×3 and where ψ is a function such that τa(ψ) is equal to
the image u. The proposed bounded transform and its inverse are given by

τa(ψ) =
a1 + 2a4

1 + a2e
− 2ψ
a3

− a4, and ξa(u) =
−a3

2
ln
a1 − u+ a4

a2(u+ a4)
,

respectively such that u = τa(ψ) and ψ = ξa(u) where the parameters a1, . . . , a4

may be preselected and are problem-dependent. More details can be found in [4].
To give an example, for an image whose intensity values are contained in the
range [0, 1], an appropriate parameter choice can be a =

{
1, 1, 0.44, 10−2

}
. To

avoid introducing non-linearity into the fitting term with the transform, the
augmented Lagrangian method is used to drive u and τa(ψ) close to each other,
with the latter remaining in the regularisation term. Similar considerations may
be applied to the point spread function (psf) to form a constrained blind method.

In our new model, we adopt a parametric approach to kernel identification
which relieves us from constraining the range of the blur function. There remains
the problem of selecting the regularisation parameter which gives the optimal
resulting image which we consider in the following section.

3 A New Model for Parametric Constrained Deblurring
with Automatic Regularisation Parameter Selection

Here, we build on the previous section by developing a semi-blind framework for
constrained multi-channel image deblurring and blur function identification.

3.1 Enhancement I - Constrained Parametric Image Deblurring

Many techniques for blind deconvolution involve blur function identification by
the joint minimisation of a variational model in order to recover the blur function
which minimises the functional. In this case, we assume that the blur is out of
focus, which may be modelled by the Gaussian function

κG(x, y;σ) = (2πσ2)−1 exp
(
−x2 + y2σ−2/2

)
.

Parametric models are beneficial because they reduce the problem of identify-
ing m × n unknowns to only a small set of parameters. We may substitute κG
into the constrained problem which gives the new aim of finding the parameter
σ which minimises the resulting functional. Since the function κG is automati-
cally constrained we do not need additional constraints given by τb(ω) and the
smoothness term. Extending the problem to multi-channel rgb images so that
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the psf is influenced by each channel, we write the functional to be minimised as

max
ϕc

min
uc,ψc,σ

{
F(uc, ψc, σ;ϕc) =

∑

c∈{r,g,b}

1

2
||κG(σ) ∗ uc − zc||2L2(Ω)

+ α

∫

Ω

|∇τa(ψc)| dx +
γc
2
||uc − τa(ψc)||2L2(Ω)+ < ϕc, uc − τa(ψc) >

}
. (2)

We minimise this functional by deriving the EL equations given below and find-
ing the arguments which allow them to be equal to zero.

F1(σ, uc, zc, ψc, ϕc) = κ†
G(σ) ∗ (κG(σ) ∗ uc − zc) + γ (uc − τa(ψc)) + ϕ⊤

c , (3)

F2(ψc, uc, ϕc) = αR(τa(ψc)) + γ(τa(ψc)− uc)τ ′
a(ψc)− (ϕc)

⊤τ ′
a(ψc), (4)

F3(σ, u, z) =
∑

c∈{r,g,b}

(
κ′

G(σ) ∗ uc
)
(κG(σ) ∗ uc − zc) , (5)

where R is the derivative of the TV transform. We may find the solutions to
F1 = 0 and F2 = 0 using gradient descent methods and the solution to F3 = 0
using the bisection method. The overall algorithm A1 is given in Algorithm 1.

Algorithm 1 Param. constr. deconv.: uℓ1+1 ← A1

(
z, σ0,a, α, γ

)

1: Initialise u0 ← z, ψ0 ← ξa
(
u0

)
, ϕ0 ← 1

2: for ℓ1 ← 0 : maxit do
3: for ℓ2 ← 0 : maxit, ∀c ∈ {r, g, b} do
4: Calculate uℓ2+1

c ← Solve
{
F1

(
σℓ1 , uℓ2

c , zc, ψ
ℓ2
c , ϕ

ℓ2
)
= 0

}
given by (3)

5: Calculate ψℓ2+1
c ← Solve

{
F2

(
ψℓ2

c , u
ℓ2+1
c , ϕℓ2

c

)
= 0

}
given by (4)

6: Update ϕℓ2+1
c ← ϕℓ2

c + γc
(
uℓ2+1
c − τa

(
ψℓ2+1

c

))

7: if ‖uℓ2+1 − τa
(
ψℓ2+1

)
‖22 < tol then break, end if

8: end for
9: Calculate σℓ1+1 ← Solve

{
F3

(
σℓ2 , uℓ2+1, z

)
= 0

}
given by (5)

10: if ‖uℓ1+1 − uℓ1‖22 < tol then break, end if
11: end for

3.2 Enhancement II - α Parameter Mask

A mask is superimposed around the field of view in typical fundus images giving
influence from an additional artificial boundary. This creates an issue particularly
for the identification of the blur function. To address this, we may make use of a
binary image mask uG ∈ [0, 1]m×n which has been graded by an expert to avoid
heavy deconvolution in this region. We replace the scalar value α with a function
Λ which is dependent on the mask and given by

Λ(α, ρ;uG ;x) = [κG(ρ) ∗ Pα(uG)](x), Pα(uG) =

{
α if uG(x) = 0
uG otherwise.

(6)
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Note that, since we aim to avoid a discontinuous function Λ, we have used a
convolution of a modified map with the kernel function κG(ρ).

3.3 Enhancement III - Regularisation Parameter Selection

We require a method of selecting the parameter α automatically. There exist
techniques which may allow for the automatic selection of the regularisation
parameter such as [5]. These techniques may be adapted to multi-dimensional α
but they require information about the true image for comparison purposes. As
an alternative, we may attempt to use blur (or sharpness) measures but these
require a target sharpness level which is not known. In order to have an idea of
what the image should look like, we would like to make use of vessel segmentation
to measure accuracy of the deconvolution against an expert graded image.

Vessel Segmentation We now aim to provide a segmentation of the blood
vessels in order to make a comparison with the graded map. We employ a simple
method which will provide a reasonably accurate segmentation quickly. The
method has three steps. First, we use contrast enhancement in order to make
the vessels more easily distinguishable from the background. Next, we attempt
to extract the vessels as the image foreground. Finally, we use thresholding in
order to obtain a binary map of the blood vessels which may be compared
with a grader’s judgement. We begin by replacing the given image u(x) with a
contrast enhanced counterpart given by the mapping Cp : Rm×n×3 → Rm×n×3,

Cp(u(x)) = u
1
p (x), where the variable p may be selected to give a more effective

enhancement for vessel identification. In order to extract the vessels from the
image, we blur the contrast enhanced image by a blur function κX and subtract
the image. This enables the vessels to be identified and extracted as

Xp(u(x), κG(θ,x)) = [κG(θ) ∗ Cp(u)] (x)− Cp(u(x)).

In order to distinguish the vessels from the background, we now require a binary
image from Xp(u(x), κG(θ,x)) which may be achieved by thresholding at a point
µ ∈ R, which resembles implementation of a Heaviside function shifted by µ.
Since we aim to use this in a variational framework, we would like a continuous
function to implement this step. We therefore use an approximation to the shifted

Heaviside function given by Hε,µ(x) =
(
1 + exp

(
−2x−µ

ε

))−1
, where ε ∈ R is a

tuning parameter such that the limit ofHε,µ(x) as ǫ→ 0 is the Heaviside function
H(x). The vessel map V may then be calculated from the given image as

Vε,µ,p,θ(u(x)) = Hε,µ(Cp(u(x)))Xp(u(x), κG(θ,x)) =
[(κG(θ)− δ) ∗ Cp(u)] (x)

1 + exp
(
−2

Cp(u(x))−µ
ε

) ,

where δ is the delta-function, which acts as the identity under convolution.
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Measuring Fitting We may measure the accuracy of segmentation using the
Tannimoto Coefficient [6] and the Dice Similarity Coefficient [6] given by

Tc(A,B) =
N (A ∩B)

N (A ∪B)
and Dc(A,B) =

2N (A ∩B)

N (A) +N (B)

respectively where N (A) denotes the number of elements in A. As the segmen-
tation of the restored image A tends towards the grader’s segmentation B, both
of the above error measures tend toward one.

3.4 The Solution Algorithm

In order to solve the resulting EL equations, we discretise the domain as

Ω =
{
(cxhx, cyhy)

∣∣ (cx, cy) ∈ Zm0 × Zn0
}
, Zba = {c ∈ Z | a ≤ c ≤ b− 1} ,

where hx = (m − 1)−1 and hy = (n − 1)−1 are the step sizes in the x and y
directions respectively. In order to gain speed by running in parallel, we split up
the m× n image domain Ω into M + 2rx ×N + 2ry blocks Ωi,j where we allow
an overlap of rx in each direction horizontally and of ry vertically. We may then
process each of the MN blocks separately, where M = m/M and N = m/N .

Ωi,j =
{

(M(i− 1) + cxhx, N(j − 1) + cyhy)|(cx, cy) ∈ ZM+rx
−rx × ZN+ry

−ry

}

defines the blocks for i = 1, . . . ,M and j = 1, . . . ,N and solve the problem for
each simultaneously. The overall algorithm A2 is given in Algorithm 2.

Algorithm 2 Parameter Selection: uℓ ← A2(z, α
0, ρ, uG , ϑ, σ0, ε, τ, p)

1: for ℓ← 0 : max do
2: Calculate Λℓ = Λ(αℓ, ρ;uG ;x) from the boundary mask using (6)
3: Solve the deconvolution problem uℓ ← A1

(
z, σ0,a, Λℓ, γ

)
using Algorithm 1

4: Update αℓ+1 ← ϑαℓ and calculate the vessel segmentation Vℓ = Vε,µ,p,θ(u
ℓ)

5: if 1− Tc(Vℓ, uG) < tol then break, end if
6: end for

4 Experimental Results

In order to demonstrate the performance of this algorithm, we use a set of 20
blurred retinal scans, taken from the Digital Retinal Images for Vessel Extraction
(DRIVE) data set which was obtained during a diabetic retinopathy screening
program in the Netherlands. The set contains 20 test set and 20 training images,
each of resolution 768x584 and acquired using a Canon CR5 non-mydriatic 3-
CCD camera with a 45 degree field of view. To test our algorithm, the images
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were blurred and processed on a Dell XPS 8700 with an Intel Core i7-4770
processor and 32GB RAM to facilitate efficient parallel computing which allows a
3x speedup over comparable tests run serially with 4GB RAM. The computation
time for each deblurred image is approximately one minute. Improvement in
the restored image is measured using Peak Signal-to-Noise Ratio (PSNR) [1]
and Mean Squared Error (MSE) while Tc measures the accuracy of the vessel
segmentation. It can be noted in Figures 1 and 2 and in Table 1 that good results
may be achieved using this method. In all test cases, the image is improved over
the received data and the Tannimoto Coefficient corresponds well to PSNR.

(a) z (b) u (c) iV (d) zV , Tc = 0.4 (e) uV , Tc = 0.7

Fig. 1: Example of the restoration by Algorithm 2 of a retinal image corrupted by
Gaussian blur and 1% random noise. The restored image u (b) is an improvement
on the received image z (a). The vessel segmentation of the restored image uV
(e) has improved considerably over the segmentation of the received image zV
(d) and resembles more closely the target segmentation iV .

(a) z (b) u (c) zV (d) uV
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(e) α against Tc

Fig. 2: Example of the restoration by Algorithm 2 of a retinal image corrupted
by Gaussian blur and random noise. The restored image u (b) is improved over
z (a). The segmentation has also improved, the Tannimoto Coefficient (Tc) has
risen from 0.34 to 0.71. In (d), we can see the α selection determined by Tc.

5 Conclusion

In this paper, we have approached the problem of the deconvolution of retinal
images using a new multi-channel implicitly constrained parametric framework.
We have used available image masks to give a regularisation coefficient func-
tion which allows us to exclude artificial areas while using finite differences. We
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Received Image z Restored Image u Improvement
Example PSNR MSE Tc PSNR MSE Tc PSNR MSE Tc

5 33.06 32.16 0.3866 39.43 7.41 0.6467 6.37 24.75 0.2601

16 32.01 40.89 0.4126 38.25 9.72 0.7012 6.24 31.16 0.2886

18 29.90 66.59 0.3881 36.44 14.75 0.6409 6.55 51.84 0.2528

Average 31.08 55.54 0.4153 36.76 14.70 0.6689 5.67 40.84 0.2536

Table 1: Table showing the error values of some test set images as well as the av-
erages for the entire set. It can be seen that the PSNR and Tannimoto Coefficient
have been improved in each case and the MSE has also decreased.

have also developed a regularisation parameter selection technique using vessel
segmentation, which allows for the regularisation coefficient function to be set
automatically without human intervention. We have presented results demon-
strating the effectiveness of this new approach, which show an improvement in
each blurred image and suggest that this technique is reliable for producing
good-quality deconvolution results. In future research, we expect to improve the
method by using new vessel segmentation methods [8, 9], optimising the code
for computational efficiency, and evaluating the techniques on a large dataset.
We may also improve on the illumination correction in our model with more
advanced techniques and extend the model to other blur types.
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