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Abstract. We combine random forest (RF) classifiers and graph cuts
(GC) to generate a consensus segmentation of multiple experts. Super-
vised RFs quantify the consistency of an annotator through a normalized
consistency score, while semi supervised RFs predict missing expert an-
notations. The normalized score is used as the penalty cost in a second
order Markov random field (MRF) cost function and the final consen-
sus label is obtained by GC optimization. Experimental results on real
patient retinal image datasets show the consensus segmentation by our
method is more accurate than those obtained by competing methods.

1 Introduction

Improved algorithms have made it easier to analyse a wide variety of medical
images, leading to improved computer aided diagnosis (CAD) systems. CAD
systems are increasingly reliant on machine learning (ML) algorithms for image
segmentation and abnormality detection. One example is glaucoma detection
from retinal fundus images that requires segmentation of the optic cup (OC)
and optic disc (OD) to calculate optic cup-to-disc ratio (CDR). Glaucoma is a
chronic disease that affects the optic nerve resulting in its progressive damage
and elongation of the optic cup. Machine learning (ML) methods for OC and
OD segmentation [5] have gained importance as they provide a powerful tool for
feature classification.

Success of ML based segmentation algorithms depends upon the accuracy of
reference manual annotations for learning discriminative features. It is common
for medical images to be manually segmented by multiple experts. A ground
truth consensus segmentation is generated for validating the performance of dif-
ferent segmentation approaches. Obtaining consensus segmentations is challeng-
ing since manual segmentations tend to be subjective, prone to inter-observer
and intra-observer variability, and of varying accuracy.

One of the first methods to combine multiple annotations, STAPLE ([12]),
employed Expectation-maximization (EM) to find sensitivity and specificity val-
ues that maximize the data likelihood. Commowick et al. in [6] adapt the STA-
PLE algorithm to determine spatially varying performance levels using sliding
windows. Chatelain et al. in [4] use Random forests (RF) to determine most
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coherent expert decisions based on the consistency of decisions with respect to
the image features but do not account for missing annotations.

The prominent challenges in obtaining a consensus annotation from multi-
ple experts are: 1) quantifying expert’s accuracy for a weighted combination of
annotations; 2) predicting missing labels; and 3) ensuring spatial consistency
of the final annotation. To overcome the above challenges we incorporate the
the following novelties in our work: 1) an expert’s reliability is quantified using
supervised Random forest (RF) classifiers to generate a normalized reliability
score; 2) semi supervised RF classifiers are used to predict missing labels; and
3) the normalized scores are used as penalty costs in a Markov random field
(MRF) framework for spatial smoothness. The consensus annotation (ground
truth) is obtained using GC optimization because: a) no iterative approach is
employed as in EM based approaches of [6]; and b) globally optimum labels can
be obtained thus reducing chances of getting stuck in local minima. Accuracy of
consensus segmentations is validated using a ML method to segment the optic
cup and disc from retinal fundus images.

2 Method

2.1 Learning Using Random Forests

Let us consider a multi-supervised learning scenario with a training set S =
{(zn,yL, - ,y") | of samples x,, and the corresponding labels 3" provided
by R experts. A binary decision tree is a collection of nodes and leaves with each
node containing a weak classifier that separates the data into two subsets of
lower entropy. Training a node j on S; C S consists of finding the parameters of
the weak classifier that maximize the information gain (IGp,) of splitting labeled

samples S; into Sy and S;:

160055, 81,50 = H(S) ~ 2L m(s0) - 2L as) o
J

where H(S;) is the empiric entropy of S;. The parameters of the optimized weak

classifier are stored in the node. Data splitting stops when we reach a predefined

maximal depth, or when the training subset does not contain enough samples.

In this case, a leaf is created that stores the empiric class posterior distribution

estimated from this subset.

A collection of decorrelated decision trees increases generalization power over
individual trees. Randomness is introduced by training each tree on a random
subset of the whole training set (bagging), and by optimizing each node over a
random subspace of the feature parameter space. At testing time, the output of
the forest is defined as the average of the probabilistic predictions of the T trees.

2.2 Predicting Missing Labels

Missing labels are commonly encountered when multiple experts annotate data.
We use semi-supervised learning (SSL) to predict the missing labels Unlike pre-
vious methods ([3]), a ‘single shot” RF method for SSL without the need for
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iterative retraining was introduced in [7]. We use this SSL classifier as it is shown
to outperform other approaches. For SSL the objective function encourages sep-
aration of the labeled training data and simultaneously separates different high
density regions. It is achieved via the following mixed information gain for node
j:

1Gj 551 = 1G;urL +alGj 1 (2)
where IG 1, is defined in Eqn. 1. I, 1, depends on both labeled and unlabeled
data, and is defined using differential entropies over continuous parameters as

|55
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A is the covariance matrix of the assumed multivariate distributions at each
node. For further details we refer the reader to [7]. Thus the above cost function
is able to combine the information gain from labeled and unlabeled data without
the need for an iterative procedure.

Each voxel has r(< R) known labels and the unknown R — r labels are
predicted by SSL. The feature vectors of all samples (labeled and unlabeled) are
inputted to the RF-SSL classifier which returns the missing labels. Note that
although the same sample (hence feature vector) has multiple labels, RF-SSL
treats it as another sample with similar feature values. The missing labels are
predicted based on the split configuration (of decision trees in RFs) that leads to
maximal global information gain. Hence the prediction of missing labels is not
directly influenced by the other labels of the same sample but takes into account
global label information [7].

2.3 Quantifying Expert’s Reliability

Expert reliability is quantified by examining the information gain at different
nodes while training a random forest on samples labeled by a particular expert.
This helps us evaluate the consistency of the experts with respect to the visual
features. For each expert 7 we define an estimator E7 of the expectation of the
information gain on the labeled training set S; sent to node j as

~ 1
Er = 5; E IG'; (S}, Sk(0),S1(0)) (4)
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where © is a randomly selected subset of the feature parameters space. E}" mea-
sures how well the data can be separated according to the labels of each expert.
However, it suffers from two weaknesses in lower nodes of the tree: (i) it is eval-
uated from fewer samples, and hence becomes less reliable, and (ii) it quantifies
only the experts’ local consistency, without considering global consistency mea-
sures. Therefore similar to [4] we define the performance level q; of each expert

as a linear combination of the estimators E}" from root to node j as
D(j) 5
r_ Zd:o |54 {d(j)

g = : (5)
T sy
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Fig. 1. (a) template for context feature extraction; example annotations of (b) optic
disc and (c) optic cup. The ground truth consensus segmentation is shown in yellow
while the different expert annotations are shown in red, green and blue. Consensus
segmentations for optic cup obtained using (d) GCumg; (e) [6]; and (f) [1].

By weighting the estimators in proportion to the size of the training subset,
we give more importance to the global estimates of the experts’ consistencies,
but still take into account their feature-specific performances. Once the param-
eters ¢; have been computed, an expert’s reliability or self consistency (SC™) is
calculated as the average performance level over all nodes j in T trees:

Scr = ¥ 6)

where T is the total number of trees in the forest. Higher SC” indicates greater
rater consistency.

To reduce computation time we select a region of interest (ROI) by taking
the union of all expert annotations and determining its bounding box rectangle.
The size of the rectangle is expanded by +20 pixels along rows and columns to
give the final ROI. For each ROI pixel we calculate the mean and variance of
intensity and 2D curvature values from a 15 x 15 neighborhood to give 4 features.
Additionally, we extract spatial context features using the sampling template
shown in Fig. 1 (a). The circle center is the current voxel and at each point
corresponding to a red ‘X’ we calculate the mean intensity, and curvature values
from a 3 x 3 window. The ‘X’s are located at distances of 3,6,9,12 pixels from
the center, and the angle between consecutive rays is 45°. 64 context features
are obtained from the 32 points and the final vector has (64 + 4 =)68 values.

2.4 Obtaining the final labels

A second order MRF cost function is given by,

E(L)=> D(L)+XA Y V(L L), (7)

seP (s,t)EN,

where P denotes the set of pixels; Ny is the 8 neighbors of pixel s (or sample
x); Ls is the label of s; t is the neighbor of s, and L is the set of labels for all
s. A determines the relative contribution of penalty cost (D) and smoothness
cost (V). We have only 2 labels (Ls = 1/0 for object/background), although
our method can also be applied to the multi-label scenario. The final labels are
obtained by graph cut optimization [2].
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The penalty cost for MRFs is normally calculated with respect to a refer-
ence model of each class (usually distribution of intensity values). The implicit
assumption is that the annotator’s labels are correct. However, we aim to de-
termine the actual labels of each pixel and hence do not have access to true
class distributions. To overcome this problem we use the normalized consistency
scores of experts to determine the penalty costs for a voxel. Each voxel has R la-
bels (after predicting the missing labels). Say for voxel  the label y" (of the rth
expert) is 1, and the corresponding SC score is SCZ, (Eqn.6). Since SC is higher
for better agreement with labels, the corresponding penalty cost for L, = 1 is

D(L,=1)"=1-5C], (8)
where L, is the label of voxel x. The penalty cost for label 0 is
D(L,=0)"=1-D(L,=1)=5C;. (9)
The final penalty costs for each L, is the average of costs from each expert,

D(L,=1)=+3% DL, =1y,

D(L,=0)=+>F DL, =0). (10)

Since iterative approaches may get stuck in local minima, GC optimization
is appealing as it gives a global minima for binary labeled problems.

Smoothness Cost (V): V penalizes discontinuities amongst neighboring
voxels and is a function of their intensity differences. V' is given by

_Us—14)? 1

V(LS,Lt) — € 202 . =k LS 75 Lt, (11)
0 Ls = Lt.

I is the intensity and o is the intensity variance over N; (i.e., the 8 neighbors).

3 Experiments and Results

We refer to our method as GCyg (Graph Cut with Multiple Experts) and test
it’s performance on the DRISHTI-GS dataset [11]. The dataset consists of retinal
fundus images from 50 patients obtained using 30 degree FOV at a resolution
of 2896 x 1944 pixels. The optic cup and optic disc are manually segmented
by 3 ophthalmologists, and the consensus ground truth is also available. We
choose this dataset because the final ground truth and annotations of individual
experts are publicly available and facilitates accurate validation. Quantitative
evaluation is based on F-score (F =2 P x R/(P + R)) to measure the extent of
region overlap, and absolute pointwise localization error B in pixels (measured
in the radial direction); P is precision and R is recall. Additionally we report the
overlap measure S = Area(MNA)/Area(MUA). M is the manual segmentation
while A is the algorithm segmentation.

Our results are compared with the fused segmentations obtained using STA-
PLE[12], COLLATE [1], Majority voting (MV) and Local MAP-STAPLE [6].
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After obtaining the consensus segmentations we adopt two methods to vali-
date the accuracy of the consensus segmentation from each method. In the first
method (Met 1) a separate set of fully supervised RF classifiers (RF-FSL) are
trained on the consensus segmentations. The trained classifier generates prob-
ability maps for each test image voxel, whose negative log-likelihood is used as
the penalty cost. The segmentation cost function is,

E(L)=Y_ —log(Pr(L)+e)+A > L (12)

seP (s,t)EN, HS?tH’

where Pr(L;) is the probability map of test image obtained by RF-FSL. Since the
above approach uses RFs (which is also used by GCysg for predicting the fused
annotations) there is the possibility of Met 1 being biased towards our method.
Hence in the second validation strategy (termed Met 2) we train support vector
machines (SVMs) using the same features. The trained SVM predicts the labels
of each test image voxel. A convex hull is fitted to the classification map to get an
initial estimate of the optic cup and disc. Subsequently active contours [10] were
used to obtain the final segmentation. If the training labels were obtained using
GC\yg then the segmentations of the test image is compared with the ground
truth segmentation from GCjy;g. Similar tests are performed for all other label
fusion methods. Each dataset was part of the test set exactly once. A 5 fold cross
validation strategy was used for Met 1 and Met 2.

We use this validation strategy since consensus segmentations with greater
accuracy are expected to give better discriminative features and the trained
classifiers can identify the desired anatomy more accurately. The fusion method
which most effectively combines the different annotations is expected to give
highest segmentation accuracy for the test data. The relative merit of different
label fusion techniques can be judged by the accuracy of consensus segmentations
obtained through them. Our whole pipeline was implemented in MATLAB on a
2.66 GHz quad core CPU running Windows 7. Segmentation results on a separate
dataset of 10 images gave the highest F-score for A = 0.01 ((Eqn. 7)), which was
the value fixed for our experiments. The RF has 50 trees and the maximal tree
depth is fixed at 20.

3.1 Segmentation Performance

Table 1 summarizes the segmentation performance of different methods. COL-
LATE implementation is available from [8], while Local MAP STAPLE and
STAPLE implementation is available from [9]. We closely followed the parame-
ter setting recommendations given by the authors in the respective works. To test
the SSL based prediction strategy for GCys g, we create ‘missing annotations’ by
randomly removing 1 expert’s annotation for each image. We also show results
for GCpg— 4y in which none of the expert annotations were removed while pre-
dicting the final segmentation. Except for GCysp— a1, other methods don’t have
access to all annotations. Additionally, we show results for GCpp_wssL, i-€.,
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GCuEe |GCvuEe |GCrE—au|STAPLE|{COLLATE|Local MAP |GC Majority
(Met 1)|(Met 2) [12] 1] STAPLE [6]|amE—wssz|Voting
F 95.9 95.4 97.2 91.0 90.2 89.0 92.1 86.4
S 89.5 89.2 91.2 85.3 84.8 83.2 85.9 80.8
B 9.4 9.9 8.2 114 13.2 10.9 10.3 18.1
Time|7 7 7 8 6 9 7 3

Table 1. Segmentation accuracy in terms of F' score, overlap and boundary distance
for different methods. B is in pixels; Time- fusion time in minutes; F-F score; S-overlap
measure; B-boundary error.

GCu g without SSL for predicting the missing labels. Penalty costs are deter-
mined from SC;’s of available annotations. Missing annotations of experts is not
predicted and hence not used for determining the consensus segmentation. Fig-
ure 1 (b),(c) shows the individual expert annotations and the consensus ground
truth annotation while Figs 1 (d)-(f) show the predicted ground truth for 3 fu-
sion strategies. As is evident from the images GC)j;g shows the best agreement
with the ground truth segmentations. [6] is an improved version of STAPLE.

GCuypg (both Met 1 and Met 1) gives the best performance among all com-
peting methods, except GCusp—ay, followed by [6], [1], MV, and GCrp—wssL-
GCyg’s performance is significantly different from other methods (p < 0.01).
Since GChp— A had access to all annotations, it obviously performed best.
The results show SSL effectively predicts missing annotation information since
GCy g has very close performance to GCpyp—_an (p < 0.042) and GCpyrgp—wsstL
shows a significant drop in performance from GCy g (p < 0.01). The other im-
portant observation is that although Met 1 shows higher quantitative measures
than Met 2, the difference is not significant. This is not surprising since Met 1
and the fusion strategy both use RFs. However the performance of Met 2 in-
dicates that our fusion method is robust and performs much better than other
state of the art even when not using RF classifiers for validation.

Local MAP STAPLE ([6]) shows sub-optimal performance due to predict-
ing sensitivity and specificity parameters from annotations without considering
their overall consistency. Our SC score takes into account both global and local
information and is able to accurately quantify a rater’s consistency. Secondly,
Local MAP STAPLE may be prone to being trapped in local minima due to
the iterative EM approach. On the contrary, we employ graph cuts which is al-
most always guaranteed to give a global minima. This makes the final output
(the consensus segmentation) much more accurate and robust. COLLATE also
suffers due to its reliance on iterative EM.

4 Conclusion

We have proposed a novel framework using SSL, self consistency, and GC to
combine labels of multiple experts for obtaining a consensus annotation. Its per-
formance is demonstrated by segmenting optic cup and disc from retinal images.



48 D. Mahapatra and J. M. Buhmann

(a) (b) () (d) () ()

Fig. 2. Segmentation results for different methods: (a) our proposed GCig method
using Met 1; (b) GCuye using Met 2; (c) [6]; (d) [1]; (e) Majority Voting; and (f)
GCrE—an. Green contour is manual segmentation and blue contours are algorithm
segmentations from different fusion methods.

RF based SSL classifiers predict labels of missing annotations, and self consis-
tency scores effectively quantify the reliability of each expert’s labels. Graph cuts
give a globally optimal solution and minimize chances of being trapped in local
optima as is the case for EM based methods. Experiments show our approach
outperforms other competing methods for combining multiple annotations.
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