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Abstract. Automated approaches for the segmentation of the retinal
vessels are helpful for longitudinal studies of mice using spectral-domain
optical coherence tomography (SD-OCT). In the SD-OCT volumes of
human eyes, the retinal vasculature can be readily visualized by creating
a projected average intensity image in the depth direction. The created
projection images can then be segmented using standard approaches.
However, in the SD-OCT volumes of mouse eyes, the creation of projec-
tion images from the entire volume typically results in very poor images
of the vasculature. The purpose of this work is to present and evaluate
three machine-learning approaches, namely baseline, single-projection,
and all-layers approaches, for the automated segmentation of retinal ves-
sels within SD-OCT volumes of mice. Twenty SD-OCT volumes (400 ×
400 × 1024 voxels) from the right eyes of twenty mice were obtained
using a Bioptigen SD-OCT machine (Morrisville, NC) to evaluate our
methods. The area under the curve (AUC) for the receiver operating
characteristic (ROC) curves of the all-layers approach, 0.93, was signifi-
cantly larger than the AUC for the single-projection (0.91) and baseline
(0.88) approach with p < 0.05.

1 Introduction

With the increasing use of spectral-domain optical coherence tomography (SD-
OCT) in studies involving mice [1–4], there is a great need for automated image
segmentation approaches. As a starting point, Antony et al. [5] as well as Srini-
vasan et al. [6] used automatic methods to segment surfaces in mouse SD-OCT
volumes. Another structure of importance is the retinal vasculature. The auto-
mated segmentation of retinal vessels is important not only for the measurement
of vasculature properties (such as vessel widths and tortuosity), but also to help
with image registration and longitudinal studies. For example, in Srinivasan et
al.’s approach [6], the location of vessels were used to remove artifacts in layer
segmentations. In other studies, such as in the work of Gabriele et al. [2], vessel
information was used to help with manual alignment to allow for better com-
parisons of longitudinal images.
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With human data, the automated segmentation of retinal blood vessels in
color fundus photographs is a well-understood problem and has many published
papers [7–9]. Many of them can extend naturally to OCT projection images in
human retinal studies. Approaches have also been presented for the segmentation
of retinal vessels in SD-OCT volumes [10,11].

Segmenting vessels in SD-OCT data of mice needs different approaches than
in the human case because of the differences between mice and human retinal
images. More specifically, differences can be seen in example projection images
in Fig. 1. Projection images for human (Fig. 1(a) and Fig. 1(b)) have much
higher contrast between vessels and background than those of mice (Fig. 1(c)
and Fig. 1(d)). However, for mouse SD-OCT images, very limited work has
been presented for the segmentation of vessels. One implementation was briefly
mentioned in a mouse retinal layer segmentation work by Srinivasan et al. [6],
which served for correcting layer segmentations.

(a) (b) (c) (d)

Fig. 1. Comparison SD-OCT projection images from a typical human and mouse.
(a) Human: projection image from entire volume. (b) Human: projection image from
segmented bottom layer. (c) Mouse: projection image from entire volume (notice the
poor visibility of vessels). (d) Mouse: projection image from segmented bottom layer.

In this work, we propose three approaches for segmenting the mouse vascu-
lature using a k-NN classifier. The first approach uses a similar approach as pro-
posed by Niemeijer et al. [10] for human SD-OCT images involving a single layer
for projection. The second classification approach involves a single projection of
a set of layers and more initial features (reduced through feature selection). The
last approach extracts features from projection images of all segmented retinal
layers, instead of single projection image as in the first two. For convenience, we
call these methods by baseline, single-projection, and all-layers approaches.

2 Methods

An overview of the three approaches we propose is illustrated in Fig. 2. Each ap-
proach consists of four steps. First, a total of eight retinal surfaces are segmented
using the graph-theoretic approach proposed by Antony et al. [5] (Section 2.1).
Second, 2D projection images are created using intraretinal layers from the seg-
mented surfaces (Section 2.2). Third, a collection of features are generated from
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Fig. 2. Schematic overview of the three methods proposed.

projection images using Gaussian, Hessian, and Gabor-based filters. Each ap-
proach uses a different selection of features (Section 2.3). Finally, a forward fea-
ture selection is performed to obtain better feature sets (for the single-projection
and all-layers approaches), and pixel classification is used to create a blood vessel
probability map (Section 2.4).

2.1 Intraretinal Layer Segmentation

The layer segmentation is performed first using an established graph-theoretic
method proposed by Antony et al. [5] to segment surfaces in each mouse SD-
OCT volume. Within the approach, multiple 3D surfaces in SD-OCT scans are
segmented using the graph-theoretic approach [12, 13] that guarantees a global
optimal solution with respect to the cost function. Using a similar approach to
human-based approaches [13, 14], the outer surfaces marked in red in Fig. 3(a)
are simultaneously segmented first. Then the remaining surfaces, marked in yel-
low, are segmented. A multi-resolution approach [14] was also used in each of
these steps in order to reduce computation time. The cost functions used here
consisted of an on-surface cost term derived from gradient images computed us-
ing Gaussian derivative filters. Fig. 3(a) shows an example result of the layer
segmentation.

2.2 Projection Image Creation

In SD-OCT volumes of humans, vessels are often still visible in the projection
image obtained by averaging the whole volume (Fig. 1(a)). However, vessels are
barely visible in similar projection images of mice data (Fig. 1(c)). Thus, in
this work, all three proposed approaches use some type of layer-based projection
image.

In the baseline approach, a projection image from the volume is created com-
bining the inner segments (IS) to the retinal pigment epithelium (RPE) layers
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in accordance with the work of Niemeijer et al. [10]. For the single-projection
approach, we create one overall 2D projection image using all of layers from the
outer nuclear layer (ONL) to RPE. This combination of layers was experimen-
tally chosen to create a single projection image with the best visually separable
vessels. For the all-layers approach, we create 7 projection images (one for every
segmented layer). Conceptually, we generate a 400×400×7 volume instead of
400×400×1024 to find blood vessels. Fig. 3 shows example of layers used and
the corresponding projection images.

NF+GC+IPL
INL
OPL

OS
IS

RPE

ONL

(a) (b) (c)

using graph-based surface segmentation. Since the intensity of voxels of the same
column (z direction) in the same layer is likely to be similar, averaging each
intraretinal layer into a single projection image will reduce amount of voxels we
need to deal with. As a result, for all layers approach, we adopt all layers and
create 7 projection images for each location in the 2D projection image. Fig. 5
shows the layer projection images we can get from the mouse SD-OCT images.
Conceptually we generate a 400×400×7 volume instead of 400×400×1024 to
find blood vessels.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Example of all the layer projection images obtained for all layers approach.

2.3 Feature Generation

Different filters are then applied to get a feature vector for each pixel in each pro-
jection image. These features include Gaussian-based features, Hessian analysis
based features, and Gabor features.

Gaussian-based features including Gaussian derivatives can be used as de-
tecting vesselness. It is also adopted in the human approach [15]. The Gaussian-
based features would apply Gaussian filters from 0 to 2nd order derivatives (L,
Lx, Ly, Lxy, Lxx, Lyy) with scale σ of 1, 2, 4, 8, 16 to get 30 dimension feature
vectors for each projection image.

For Hessian analysis based features, method based on point detection in [11]
is used for creating filters. 2nd order derivative Gaussian filters are used as Lxy,
Lxx, and Lyy kernels of Hessian matrices. The Hessian-based filters are generated
by combining all three kernels with rotations. A collection of σ of 2, 3, 4, 5 and
orientations θ from 0o to 360o with 15o are used to generate a total of 48 features.

Gabor features can also be used for identifying vessels [4]. For Gabor features,
filters with standard deviation in the filter σ of 1, 2, 4, 6 and orientations θ from
0o to 180o with 15o interval will generate 64 Gabor-energy features [12]. The
mean and variance from symmetric Gabor filters are also used as features. In
total, there will be 192 Gabor features for one projection image.

For each of the three approaches, we use some different features. In the
baseline method, only features generated using Gaussian filter banks are used
for the process according to [15]. In single projection method, we use all features
from Gaussian, Hessian, and Gabor-based features. A total of 270 features is
used for vessel segmentations. For all layers method, there are too many features
generated from Gabor set. Hence, we would only apply Gaussian and Hessian-
based filters to generate (30 + 48)× 7 = 546 features from 7 projection images.

(d)

Fig. 3. Projection images for three approaches. (a) Layers used for creating projection
images shown in single slice of 3D volume (blue arrow = baseline approach; green
arrow = single-projection approach). (b) Projection image for baseline approach. (c)
Projection image for single-projection approach. (d) Seven projection images for all-
layers approach (one for each layer).

2.3 Feature Generation

The features extracted from each projection image are based on a combina-
tion of Gaussian, Hessian, and Gabor filters. Gaussian filters including Gaussian
derivatives are commonly used to generate features and were also adopted in
the human approach [10]. In particular, we applied Gaussian filters from 0 to
2nd order derivatives (L, Lx, Ly, Lxy, Lxx, Lyy) with scale σ of 1, 2, 4, 8, 16 to
obtain a 30-dimension feature vector for each pixel of each projection image.

For Hessian-based features, a method based on point detection in [15] was
used for creating filters. The filters were generated based on 2nd order derivative
Gaussian components (Lxy, Lxx, Lyy) in Hessian matrix and angles of rotation.
A collection of σ (2, 3, 4, 5) for Gaussian derivatives and rotations θ (0o to 180o

in 15o increments) were used to generate a total of 48 features.
Gabor features can also be used for identifying vessels [16]. For Gabor fea-

tures, filters with standard deviation σ of 1, 2, 4, 6 and orientations θ from 0o to
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180o using 15o increments generated 48 Gabor-energy features. The mean and
variance from symmetric Gabor filters were also used as features. In total, there
were 144 Gabor features for each pixel of each projection image.

For each of the three approaches, we use different features. In the baseline
method, only features generated using Gaussian filter banks are used to be con-
sistent with [10]. In the single-projection method, we use all of the Gaussian,
Hessian, and Gabor features mentioned above (222 features before feature selec-
tion). For the all-layers method, because including Gabor features would gener-
ate more than 1500 features in total, we only apply Gaussian and Hessian-based
filters to generate (30 + 48) × 7 = 546 features from 7 projection images. All
features were normalized to have zero mean and unit variance.

2.4 Feature Selection and Pixel Classification

A sequential forward feature selection approach [17] is used as part of each cross-
validation training step to select a smaller and more helpful set of features for
classification. (In the baseline approach, feature selection is not used because of
the relatively small feature-set size and for consistency with [10].) As part of
feature selection and the final classification, a k-NN classifier (k = 31 as also in
the human-based approach [10]) with soft labels is used for identifying pixels as
vessel or non-vessel.

3 Experimental Methods

For validation of the method, we use 20 SD-OCT images (400×400×1024 voxels;
3.5×3.5×1.53 µm per voxel) all from right eyes of 20 mice from a Bioptigen
scanner. Using information from each of the layers as well as the overall best
single projection image, pixels in the 2D projection images are manually labeled
as vessel or non-vessel.

A cross-validation strategy is used to evaluate each approach. In particular,
the 20 images are randomly divided into 5 sets with 4 images in each set. For
each of the 5 sets, a training phase as detailed in the next paragraph is applied
(also including feature selection) to the images in the remaining 16 images and
this trained approach is applied to the 4 images in the set during the testing
phase. Applying this training/testing process for each of the 5 sets results in the
classified result for all 20 images.

The training phase for the single-projection and all-layers approaches includes
feature selection (Section 2.4). In particular, the 16 images in the training phase
are divided into two image subsets (8 in each) – a reference training subset and
testing training subset – to find the best features. From the two training subsets,
for speed performance, we randomly pick a subset of 100,000 training reference
and 100,000 training testing instances to be used in the feature selection process.
A total number of 20 features are selected.

For each of the five testing cross-validation rounds, the same 16 images in the
training phase are used as the reference set, with 200,000 points being randomly
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selected. Then, every pixel point in the four images to be tested is classified as
vessel or non-vessel using the k-NN classifier.

Receiver Operating Characteristic (ROC) curves are obtained by computing
the sensitivity and specificity using different thresholds (i = 0, 1, ..., k) of the
soft-labeled images. The area under the curve (AUC) of the ROC curves are
computed to evaluate the segmentation results. The AUC of approaches are
then compared using the bootstrapping method by Carpenter and Bithell [18]
using the pROC package in R [19].

(a) (b) (c)

Fig. 4. Example projection image(s) and result from the (a) baseline approach, (b)
single-projection approach and (c) all-layers approach.

4 Results

Example results can be seen in Fig. 4. The all-layers approach generates the best
overall vessel image. It has cleaner background, and segmented blood vessels are
clear and continuous. For the baseline approach, not only are more non-vessels
segmented as vessels, some vessels cannot be successfully segmented compared
with the other two approaches.

ROC curves of all three methods are plotted in Fig. 5. As shown in Fig. 5,
the AUC of the ROC curve for the baseline approach is 0.88. The AUC for the
single-projection approach is 0.91, and is significantly better than the baseline
approach (p < 0.05). The AUC for the all-layers approach is 0.93, which is
significantly better than that of the other two approaches (p < 0.05).
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Fig. 5. ROC curves for baseline, single-projection, and all-layers approach.

5 Conclusion

There are three approaches proposed in this work for segmenting retinal ves-
sels in SD-OCT volumes of mice. Our results show that with baseline approach
adopted from prior human-based work, some of the vessels cannot be successfully
segmented. Using the other two new approaches results in a significant improve-
ment, with the method using projection images from all layers providing the best
overall results with more visible vessels and higher contrast. Having such auto-
mated retinal vessel segmentation approaches as presented will greatly enhance
the image-analysis possibilities of longitudinal SD-OCT volumes of mice.
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segmentation in 3D spectral OCT scans of the retina. In: SPIE Medical Imaging.
Volume 6914. (2008) 69141R (8 pages)

11. Xu, J., Tolliver, D., Ishikawa, H., Wollstein, G., Schuman, J.S.: 3D OCT retinal
vessel segmentation based on boosting learning. In: World Congress on Medical
Physics and Biomedical Engineering, Springer (2009) 179–182

12. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric
images-a graph-theoretic approach. IEEE Trans Pattern Anal Machine Intell 28(1)
(2006) 119–134
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