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Abstract. Myopia is the leading public health concern with high prevalence in 

developed countries. In this paper, we present the ACHIKO-M fundus image 

database with both myopic and emmetropic cases for high myopia study.  The 

database contains 705 myopic subjects and 151 normal subjects with both left 

eye and right eye images for each subject. In addition, various clinical data is 

also available, allowing correlation study of different risk factors. We evaluated 

two state-of-the-art automated myopia detection algorithms on this database to 

show how it can be used. Both methods achieve more than 90% accuracy for 

myopia diagnosis. We will also discuss how ACHIKO-M can be a good data-

base for both scientific and clinical research of myopia. 

 

1 Introduction 

High myopia is a type of severe shortsightedness characterized by the growing axial 

length of the eye. People with high myopia usually have a spherical equivalent refrac-

tion of a least -6 diopers [1]. Over the last few decades, high myopia has increased in 

prevalence across populations and shifted to a younger age [2]. High myopia can lead 

to a number of pathologic complications such as posterior vitreous detachment, retinal 

detachment and pathological myopia, if degenerative in nature.  Peripapillary atrophy 

(PPA), which is a recession of retina tissues, is an important risk factor and indicator 

of myopia [3]. In fundus images, PPA is a crescent-shaped area adjacent or around the 

optic disc (Fig. 1). It is found that the area of PPA is strongly correlated with the se-

verity of myopia [4]. Thus, identifying PPA from fundus images is essential to help 

clinicians in the diagnosis and treatment of high myopia.  

To provide a fast and accurate way of detecting PPA and hence pathological myo-

pia or high myopia, researchers have developed several automated systems using 

advanced image processing and machine learning techniques. A segmentation based 

approach is proposed in [5] as part of the PAMELA (Pathological Myopia Detection 

Through Peripapillary Atrophy) system. Two different settings of the variational level 

method are employed to segment the optic disc region as well as a larger region, in-

cluding optic disc and possible PPA. After computing the difference of the two re-



gions, the presence of PPA is determined by the asymmetry of the difference in the 

temporal and nasal sides. In [6], a similar idea is adopted with the difference of seg-

menting the two regions using a Chan-Vese model with shape constraints. Experi-

mental results show that this method can repeatedly detect both the sizes of the OD 

and PPA region automatically, and achieved a mean accuracy of 91.3% and 92.5% in 

defining the size of the OD and PPA respectively. In [7], a texture analysis based 

approach was proposed.  After automatic detection of the region of interest and optic 

disc, texture-based metrics are generated, categorized and grouped into zones for 

generation of features. Finally, these sector-based texture features will be used in a 

support vector machine to determine the presence of PPA, and correspondingly patho-

logical myopia. Recently, much effort has been spent in pathological myopia detec-

tion through machine learning techniques [8, 9, 10]. In [8], biologically inspired fea-

tures (BIF) from a focal region of the retinal image are used for the automatic detec-

tion of PPA. As BIF is an intrinsically low dimensional feature embedded in a high 

dimensional space, the authors proposed a manifold learning method to reduce the 

feature dimension of BIF, which achieved better performance. The BIF based ap-

proach was tested on a total of 1584 images from SCORM, and the results achieved 

an accuracy of more than 90%. In [9], a bag-of-feature and sparse learning based 

framework was proposed for the automatic recognition of pathological myopia, where 

the most related visual features are discovered via sparse learning concurrently. Ex-

perimental results based on the evaluation on a population based dataset of 2258 im-

ages achieved an area under curve (AUC) of 0.964±0.007 and 90.6±0.1% balanced 

accuracy with 85% specificity. In [10], another computer-aided diagnosis framework 

called Pathological Myopia diagnosis through Biomedical and Image Informatics 

(PM-BMII) was proposed to intelligently fuse heterogeneous biomedical information 

to improve the accuracy of disease diagnosis using multiple kernel learning methods. 

The proposed PM-BMII framework has been tested on the Singapore Malay Eye 

Study (SiMES), and the performance can reach an AUC of around 88%. 

 

  
(a)                                         (b)                                                (c) 

Fig. 1. Sample fundus images with PPA (a, b) and without PPA (c). 

In this paper, we present a specially designed retinal fundus image database for high 

myopia study. The database is constructed from a case-controlled study that contains 

only normal subjects and high myopia subjects. The rest of the paper is organized as 

follows. In Section 2, we introduce the data available in the ACHIKO-M database and 
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how it can be used in myopia study. Section 3 reviews two state-of-the-art pathologi-

cal myopia detection methods [8, 9] in more details, and compares the experimental 

results from both methods on this database. We conclude this paper with discussions 

and conclusions in the last section.   

2 ACHIKO-M Database 

2.1 Data Source 

The ACHIKO-M database is constructed from a high myopia study on soldiers in 

Singapore Armed Forces from 2011 to 2012. A total of 1712 images from 856 sub-

jects aged from 19 to 25 are selected with one optic disc centered image for each eye.  

The images have the same dimension of 3504 x 2336 pixels, and are of JPEG format. 

All images are anonymized to hide critical information of the subjects. Within the 

database, 705 subjects are diagnosed as high myopic and the rest 151 subjects are 

emmetropic (normal vision).      

Table 1. SELECTED CLINICAL DATA OF ACHIKO-M DATDABASE 

 Parameter Details 

SE Spherical Equivalent 

SPH Sphere (SPH lens power) 

CYL Cylinder (CYL astigmatism) 

Age Age when examination 

AgeRefractiveError Age when SE reach -6D 

AgeWearGlass Age when start wearing glasses 

Gender Male or female 

Ethnic Group Chinese, Malay, Indian or others. 

Eye Surgery Eye surgery other than laser vision correction 

Cornea Normal or abnormal 

Lens Normal or abnormal 

Pupil Normal or abnormal 

Conjuctiva Normal or abnormal 

Anterior Chamber Normal or abnormal 

Comments Comments about other eye conditions 

 

2.2 Clinical Data 

Besides 2D retinal fundus images, various clinical information is available for all 

subjects. There are four categories of clinical information: demographic data, ocular 

history, refractive status and anterior segment examination data. Table 1 shows some 
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important parameters available in the clinical data. In all subjects, 92% are Chinese, 

5% are Malay, and 3% are Indian and others.  

One of the most important parameters is the spherical equivalent (SE), which has a 

direct effect on how the fundus image looks like. The distribution of this parameter is 

shown in Fig. 2. We can see that all myopic eyes have SE of at least -6 D, while em-

metropic eyes have SE values between -0.5 D to 0.5 D. Thus, ACHIKO-M is a strictly 

controlled database that can be used to study obvious differences between myopic and 

emmetropic cases.  

The distributions of age when myopic subjects start wearing glasses and age when 

their SE values reach -6 D are shown in Fig. 3. The average age for the subjects to 

start wearing glasses is 7.57, with 90.6% of them start before the age of 10. In addi-

tion, the average for SE to reach -6 D is 13.71.  

2.3 Proposed Usage 

The database can be used in several ways, both scientifically and clinically: 

a) To develop automated high myopia detection algorithms; 

b) To study correlation of PPA size and spherical equivalent; 

c) To develop machine learning and regression models for predicting SE from 

fundus images; 

d) To benchmark automated myopia detection algorithms; 

e) To clinically analyze correlation of high myopia with other risk factors such 

as disc tilting.  

 

 

 

Fig. 2. Distribution of spherical equivalent for ACHIKO-M database (Frequency based on 

number of eyes).  
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                                           (a)                                                                     (b) 

Fig. 3. Distribution of AgeWearGlass and AgeRefractiveError for ACHIKO-M database (Fre-

quency based on number of subjects).  

3 Experiments 

3.1 Experiment Settings 

In order to do a holistic analysis of both systems, we performed a 2-fold cross valida-

tion. For the dataset, half of the myopic cases and half of the control cases are ran-

domly selected for training (S0). The rest of the cases are used for testing (S1). Then, 

the training and testing datasets are switched and the average result of the two splits is 

reported. This experiment setting has the advantage of ensuring a large dataset for 

both training and testing. Moreover, each sample is used for both training and testing 

on each fold. The process is repeated for ten times.  

3.2 Sparse Biologically Inspired Feature Manifold (SBIFM) 

In [8], the optic disc is first located through an adaptive thresholding and constrained 

elliptical Hough Transform. The focal region of interest around the optic disc is then 

defined as an ellipse with the same centre and angle with the optic disc, but larger 

radii. The rationale for this step is to find a region that includes PPA and excludes 

other regions as much as possible.  

Biologically inspired feature (BIF), which consists of 34 feature maps from intensi-

ty units, color units and C1 units, is extracted to mimic ophthalmologists’ visual cor-

tex to recognize PPA. As BIF is a low dimensional feature artificially embedded in a 

high dimensional space, redundancy reduction is performed through sparse transfer 

learning. The selective pair-wise discriminant analysis is used to formulate the sparse 

transfer learning. Finally, the processed features are passed to a support vector ma-

chine to train the classification model and perform testing.  
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3.3 Bag-of-Feature and Sparse Learning (BoFSL) 

In [9], a machine learning based framework was proposed to learn the visual corre-

spondence to myopia. In the learning phase, a codebook is generated using bag-of-

feature model and sparse learning feature selection. The classification model is then 

learnt.  

To build the bag-of-feature model, SIFT (Scale-invariant feature transform) fea-

tures are extracted from the green channel image by Harris-Laplacian, Hessian-

Laplacian and Maximally Stable Extremal Region detectors. These features, each 

represented as a quantized 128-dimensional histogram, include both corner and blob 

information. Finally, a k-means clustering is used to generate the codebook.  

To obtain higher precision and speed by using only relevant information, feature 

selection is necessary. Denoting the original feature as    , which consists of g groups, 

and its label as           , the feature selection can be done by minimizing the 

following objective function: 

 

    ∑ ‖       ‖
    ‖ ‖    ∑ ‖  ‖ 

 
   

 
                       (1) 

 

where   is number of training samples,   is the weight to be learnt,    and    are 

parameters to control sparsity. In this equation, the first term represents the label es-

timation error, the second term is a L1 norm based regularizer to enforce feature spar-

sity and the last term is a L1,2  norm based regularizer to enforce group sparsity.  

3.4 Evaluation Metric 

To evaluate the classification performance of both methods, we use the accuracy 

(ACC) metric which can be calculated from sensitivity (SEN) and specificity (SPE): 
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                                                    (3) 

 

     
  

     
                                                    (4) 

 

where TP, TN, FP and FN denote the number of true positives, true negatives, false 

positives and false negatives respectively, and Pre is the prevalence of the disease in 

the dataset. 

3.5 Experimental Results 

The classification accuracy for methods in [8] and [9] is shown in Table 2. We can 

see that these two methods achieve very close performance, with accuracy of more 

than 90%. The results show that both methods are able to differentiate high myopia 

from normal with a high accuracy. At the same time, it also demonstrates that 
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ACHIKO-M is a good database for developing and benchmarking automatic myopia 

detection systems. 

Table 2. Comparison of classification accuracy for sparse biologically inspired manifold 

(SBIFM) and bag-of-feature and sparse learning (BoFSL) on ACHIKO-M database. 

Round SBIFM BoFSL 

1 0.966 0.957 

2 0.959 0.946 

3 0.971 0.950 

4 0.962 0.949 

5 0.972 0.952 

6 0.970 0.946 

7 0.959 0.949 

8 0.972 0.946 

9 0.964 0.957 

10 0.960 0.960 

Average 0.966 0.951 

 

4 Conclusions  

In this paper, we present the ACHIKO-M retinal fundus image database for high my-

opia study. The database contains both high myopic cases and control cases, making it 

ideal for developing and benchmarking computer-aided diagnosis systems. We also 

compared two state-of-the-art computerized pathological myopia detection systems 

and tested them on the ACHIKO-M database. Results show that both systems perform 

well on this database, demonstrating its usefulness in high myopia study. Future work 

includes annotating the exact location of the optic disc and PPA for a subset of the 

database to study the correlation of PPA size and severity of myopia, as well as de-

veloping PPA segmentation algorithms.  
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