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Abstract. The location of three main anatomical structures in the retina
namely the optic disc, the vascular arch, and the macula is significant
for the analysis of retinal images. Presented here is a novel method that
uses an integrated approach to automatically localize the optic disc and
the macula with very high accuracy even in the presence of confounders
such as lens artifacts, glare, bright pathologies and acquisition variations
such as non-uniform illumination, blur and poor contrast. Evaluated on
a collective set of 579 diverse pathological images from various publicly
available datasets, our method achieves sensitivity > 99% and normal-
ized localization error < 5% for optic disc and macula localization.

1 Introduction

Optic disc (OD), also known as optic nerve head (beginning of optic nerve) is
a roughly circular bright structure in the retinal fundus from which the retinal
blood vessel tree emerges. Macula, on the other hand, is a dark avascular re-
gion in the retina responsible for central vision. Both these structures are vital
parts of the retina, and establish visual landmarks for describing other anatom-
ical and pathological structures. Detection of OD is required for identifying and
quantifying glaucoma. Any pathology near the macular center directly affects
the central vision, signifying advanced stages of retinal diseases like age-related
macular degeneration, maculopathy and diabetic retinopathy (DR). Hence, de-
tection of OD and macula is an essential step in disease screening and grading
disease severity.

Fig. 1. Two retinal views (central view, disc-centered view) showing OD, macula, ar-
cades on nasal and temporal side



1.1 Prior work

For the detection of OD, existing methods exploit specific characteristics such
as shape, intensity, e.g., Hough circle transform [1], bright region segmentation,
matched filter [2] and feature based classification [3]. Though such methods
perform satisfactorily in majority of cases, they might lead to false detection
in the case of poor contrast, faint or indistinct OD, presence of pathologies
including Geographic Atrophy (GA) and very large exudates.

An alternative is to use indirect attributes, relying on domain information:
emergence of retinal blood vessels from the OD. In [4] fuzzy convergence of
vessels is used to detect OD. In [5] vessel directions were found by utilizing
the information that the convergence of vessels occur at OD position. Both
these approaches have indicated high accuracy in a challenging dataset [4]. A
reported limitation, however, is the dependence on sufficiently reliable blood
vessel segmentation.

Some of the prominent work for the detection of macula are low intensity
pixel clustering, template matching [6] and utilization of parabolic model [7]
along with retinal raphe [8]. Performance of intensity based methods for macula
detection are usually hindered by pathology such as GA. The macula by itself
is not a conspicuous structure, and darker images (due to pigmentation, low
illumination) might pose a challenge for reliable detection.

To address the drawbacks of individual methods used in existing work, we
propose an approach which converts the inter-dependency of the three anatom-
ical structures: OD, macula and vessels, into an iterative inter-refinement pro-
cess. Our proposed approach consists of an unconventional method of utilizing
blood vessels for refining the symmetry of vessel map, estimating the distance
transform and determining an estimate for macula location. The highlight of our
approach is the integration of multiple strategies including intensity information,
characterization of symmetric vessel structure and the anatomical cues such as
distance of macula from OD, intensity and avascularity of macula. By combin-
ing the strengths of the individual strategies, our approach renders a reliable
localization overcoming imaging artifacts, acquisition variation and pathologies.

2 Proposed method

Our proposed method is targeted at two widely used views of the retina captured
in retinal images (refer fig. 1). Our proposed method consists of three important
steps: 1. Refining the symmetry of arcade by iteratively redetermining axis of
symmetry, 2. Modeling the retinal arcades and estimating the individual esti-
mates for OD and macula centers, 3. Integration of multiple approaches to arrive
at final estimate of OD and macula center. Given an image of unspecified view,
our method progresses as follows (refer fig. 3):

We extract the crude form of the vascular arcade V0 (refer fig. 2) by adopting
a simple vessel detection step based on morphology (supremum of opening with
rotated linear structuring elements).
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Fig. 2. Computation of crude arcade V0 from grayscale channel

From V0, we iteratively estimate the axis of symmetry Xi, and refine Vi so that
the arcade pixels are progressively selected to be symmetric about the axis

Xi = estimate symmetry(Vi) (1)

Vi+1 = refine arcade(Vi, Xi) (2)

Fig. 3. Flowchart depicting the process of localization of OD and macula

The three individual estimates of OD are as follows (refer fig. 4):
Estimation of initial OD location: Using the refined axis of symmetry Xr,
the initial guess of OD location D1 is made by examining a band of pixels around
the axis, to spot convergence of blood vessel pixels.
Parabolic model fitting on arcade: The arcades of the refined vessel structure
Vr are modeled by fitting twin parabolas and their common vertex D2 is the
second estimate of OD location (though their axes are independent). D1 and Xr

provide initialization for vertex and axes of the parabolas respectively.
Intensity based OD localization: The third estimateD3 of OD location is the
maximum intensity point within the segmented region obtained by a statistical
thresholding method constrained by a window around D2.
We thus impose transitive dependency between the above determined estimates
of OD position, whereas the estimates of macula are independent, aiding in
precise macula localization irrespective of magnitude of error in OD localization.
The macula estimates are (refer fig. 4 and 5):
From major arcade fitting: The intersection of focal chord normals of the
fitted major arcade parabola provides an estimate of macula position M2.
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Fig. 4. (1) Computation of D1 from Vr and Xr, (2) Twin-parabola fit and D2 lo-
calization, focal chord intersection of major arcade parabola (P+) to define M2, (3)
Localization of M3 using distance transform from anatomical cues

From anatomy: The macula is at a distance of 2-2.5 ‘disc diameters’ temporal
to the optic disc [8], flanked by the major arcade, and is avascular. These char-
acteristics are applied to compute macula estimate M3. We compute a binary
distance transform of Vr, and locate M3 as the maximum (furthest from vessels)
within an annulus centered on D2 and radius set using the focal length of the
major parabola.
From axis determination step: An estimate of the macula position M1 comes
directly from our method of determining axis of symmetry. This is elaborated in
the following section.

2.1 Determining axis of symmetry

The crux of our approach is a reliable identification of symmetry of the vascula-
ture from crude arcade V0. We use an iterative model-fitting approach, where our
chosen parametric curve models the vessels diverging at the OD and converging
around the macula. Our model of choice is ellipse due to its axial symmetry, and
the method of fit we use is a nonlinear least-squares algorithm with pragmatic
bounds on the major and minor axis lengths. For least-squares fit, we use ‘Trust
Region Reflective’ optimization algorithm, since it handles bound constraints
better than LM optimization. The major axis of the fitted ellipse gives the axis
of symmetry X of the major arcade.

Due to image variations (illumination, contrast, imaging artifacts) and pathol-
ogy, the data (V0) supplied to the fitting routine might not be sufficiently reliable
for producing a structurally descriptive elliptic model of the major arcade. We
treat this as a problem of model fitting in the presence of partial data and noisy
data. Our solution is two-fold: 1. Refining the apparent symmetry in the in-
put, and recomputing the model fit by iteratively reselecting the input data Vi,
2. Robust fit using RANSAC

At the end of each iteration, the axis Xi is used to divide Vi into two, and in
each half, a top-percentile threshold and skeletonization are applied to compute
Vi+1. Iteration terminates when there is no change in Vi+1. Three outcomes arise
from this method: 1. Xr the refined axis of symmetry at convergence, represents
an estimate of the retinal raphe, along which the OD and macula are expected to
lie, 2. Vr a refined arcade, which is suitable for fitting twin parabolas (discussed
next), 3. M1 the center of the ellipse, which is an estimate of the macula position.
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2.2 Modeling the retinal arcades

In order to generalize across the two views (central view, disc-centered view) we
fit twin parabolas on Vr, providing initialization from Xr and D1 (fig. 4). One of
the parabolas (P+) represent the major temporal arcade which encompasses the
brighter side of OD, while its counterpart (P−) represents the nasal arcade. From
the fit, the parabola with greater number of inlying vessel pixels is named as P+,
since the major arcade arterial and venous vessels occupy more pixels compared
to nasal arcade. If the number of inliers for P+ and P− are comparable, it
signifies that the image might be of disc-centred view. In such case, we examine
the intensity enclosed by the two parabolas near the vertex, and consider the
brighter of the two as P+. Also in such case, we regard the estimate of macula
M1 as unreliable.

2.3 Integrating multiple approaches

We integrate these position estimates for OD and macula, to arrive at the lo-
cation that best matches with the anatomical position, by building on their
individual strengths.

Fig. 5. (1)M1 from the symmetry model, (2) Integration of position estimates obtained
from multiple approaches

The estimate from curve fitting method D2 localizes the OD region accurately
while D3 gives precise estimation of OD center. By spatially confining our search
space around D2, we avoid other bright pathologies and confounders. Hence, we
assign D3 as final estimate D∗ of OD location (fig. 5). Further, as a preprocessing
step, we dynamically select the channel of best contrast for the particular image,
and apply a non-linear (gamma) stretch in the brighter intensities (above back-
ground level). The main false positives in the estimation ofD3 such as RNFL and
choroidal blood vessels are overcome by channel selection and gamma stretch.

Depending on type of view, the reliability of M1 and M2 changes. Thus,
the estimate M3, which is obtained from binary distance transform of Vr using
anatomical information, is used here in addition to vessel attributes. The esti-
mates M1 and M2 are shifted to their local minima within a specified window,
since they might not naturally coincide with intensity minima. By spatially con-
fining our search space by M3, we determine the final estimate for macula center
M∗ by choosing the point among local minima nearer to M3 (fig. 5).
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3 Results and discussion

We have evaluated the performance of our method on publicly available datasets:
DIARETDB1 (89 images), DMED (169 images), MESSIDOR (100 images),
DRIVE (40 images), STARE (81 images used in [4]and [5]), and a dataset of 100
pathological images collected from a local hospital. The cumulative collection
forms a representative dataset (Combined) consisting of 579 images, of which
416 images (71.8%) are pathological. The collection consists of mydriatic and
non-mydriatic images with diverse pathologies and varying angles of acquisition.
STARE and local datasets include disc-centered view images too. STARE has
challenging images with imaging artifacts, and severe pathology, with OD either
partially or completely in view.

We apply a rigorous evaluation metric for the localization of OD and macula,
based on which we determine sensitivity in a stringent manner. Previously, [9]
used this measure for OD localization, by normalizing the mean error. We express
the accuracy of localization in terms of normalized error for each image:

ξdisc =
∥ Dgt −D∗ ∥

disc dia
ξmac =

∥ Mgt −M∗ ∥
disc dia

(3)

expressed as a percentage error value, with respect to expert annotation of disc
center Dgt, macula center Mgt and disc diameter disc dia.We consider a detec-
tion as true-positive if ξ ≤ 40%.

Table 1. Mean percentage error among true-positives, sensitivity in different datasets,
in decreasing order of ξdisc(D

∗). Number of false-positives: OD - 5, Macula - 2

Dataset OD
localization

Macula
localization

Detection
sensitivity

(No of images) ξdisc ξmac

D2

(%)
D∗

(%)
M1

(%)
M2

(%)
M∗

(%)
OD
(%)

Macula
(%)

DC
STARE (20) 11.45 9.79 15.99 13.05 11.93 95 100

Local (37) 2.93 1.20 7.13 5.66 5.59 100 100

CV

STARE (61) 15.66 9.63 15.64 20.5 11.13 95.08 96.72

DRIVE (40) 17.70 7.59 7.74 18.66 4.07 100 100

DIARETDB1 (89) 11.95 4.73 5.66 8.10 3.14 100 100

Local (63) 3.23 1.89 5.23 6.13 4.15 100 100

DMED (169) 4.22 1.87 1.83 3.91 1.21 99.40 100

MESSIDOR (100) 4.95 1.85 3.57 4.24 2.57 100 100

Combined (579) 7.72 3.74 5.76 8.03 3.94 99.13 99.65

DC - Disc-centered, CV - Central view

Our integrated method achieves an overall sensitivity of 99.13% and 99.65%
for OD detection and macula detection respectively in Combined, which is com-
parable with [7] and state-of-the-art [3]. We get ξdisc(D

∗) and ξmac(M
∗) values
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of 3.74% and 3.94%, which is considerably lower than 7% reported in [9]. On
STARE dataset alone, the overall sensitivity of OD detection is 95%, comparable
to reported results of [8], whereas in macula detection, our method achieves sen-
sitivity 97.53%, an improvement over the best published results of [6]. Based on
our extensive evaluation and results of the intermediate stages of our integration
method, we tabulate the error percentages observed among true-positives in each
dataset of our collection, along with Combined (shown in Table. 1). Three im-
portant patterns are evident: 1. In disc-centered images, ξmac(M2) < ξmac(M1)
whereas in central view images, ξmac(M2) > ξmac(M1), 2. D

∗ and M∗ show
considerably lower ξ values than the individual estimates, for both the OD and
macula localization across all datasets, 3. The normalized error ξdisc(D

∗) and
ξmac(M

∗) is less than 5% in Combined.
Our analysis shows the merit of our integrated method over the individual

estimates. The strongest attribute in our method is the iterative refinement
of blood vessels, which provides M1, and good initialization for twin parabola
(yielding D2,M2). Though the percentage error of these estimates appear high
compared to D∗,M∗, they provide accurate bounds within which intensity and
anatomy information are applied, to give both accurate and precise locations
(D∗,M∗), thus yielding high detection sensitivity. This pattern is clearly seen in
DRIVE, a non-mydriatic dataset having choroidal vessels.

On pathological datasets such as DMED (macular edema), DIARETDB1,
MESSIDOR (DR), our method shows low error for M∗ with nil false-positives,
indicating its potential in disease grading applications. In disc-centered images,
the estimate M2 is more reliable than M1, as evident from table.1, since twin
parabolas would fit the retinal arcades better than ellipse. Among the true posi-
tives, the error values appear to be relatively high in STARE, since it has images
with indistinct or partial OD compounded by absence of parabolic focal chord
vessels (fig.6(3)), disproportionate distance between OD and macula due to var-
ied angles of acquisition.

Fig. 6. (1) and (2) Accurate D∗ and M∗ in pathological images. (3) Accurate M∗ in
spite of imprecise D∗

From the evaluation, we observe that our method performs satisfactorily
with low ξdisc(D

∗) and ξmac(M
∗) even in case of imaging artifacts, presence of

macular pathologies such as GA, bright lesion clusters and disc pathologies such
as bleeding, hemorrhage on disc (fig. 6 (1 and 2)) and localizes macula accurately
even with imprecise OD localization (fig. 6 (3)).
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4 Conclusion

The key contribution of our method is integration of multiple approaches such
as intensity based segmentation, parametric modeling and anatomical cues us-
ing distance transform, by leveraging the strengths of individual approaches.
The proposed algorithm for the detection of OD and macula is highly robust,
giving 99% detection sensitivity for both OD and macula detection on highly di-
verse pathological dataset with overall normalized errors, ξdisc and ξmac of 3.74%
and 3.94% respectively, thus showing reliable results, with immediate applica-
bility in disease analysis. Our future work will target the challenges in analyzing
other views of retina involving partial/absent OD and macula, leading to util-
ity in multi-view analysis and registration, and OD segmentation for glaucoma
analysis.
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