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Abstract. This paper presents a method to automatically assess the
accuracy of image registration. It is applicable to images in which ves-
sels are the main landmarks such as fundus images and angiography. The
method simultaneously exploits not only the position, but also the inten-
sity profile across the vasculatures. The accuracy measure is defined as
the energy of the odd component of the 1D vessel profile in the difference
image divided by the total energy of the corresponding vessels in the con-
stituting images. Scale and orientation-selective quadrature filter banks
have been employed to analyze the 1D signal profiles. Subsequently, the
relative energy measure has been calibrated such that the measure trans-
lates to a spatial misalignment in pixels. The method was validated on a
fundus image dataset from a diabetic retinopathy screening program at
the Rotterdam Eye Hospital. An evaluation showed that the proposed
measure assesses the registration accuracy with a bias of -0.1 pixels and a
precision (standard deviation) of 0.9 pixels. The small Fourier footprint
of the orientation selective quadrature filters makes the method robust
against noise.

Keywords: Registration validation, vessels, eye fundus, diabetic retinopa-
thy.

1 Introduction

Registration of medical images can be defined as a spatial mapping between two
or more images in order to relate them for diagnosis, screening, or other clinical
purposes. The images to be registered may be acquired from different patients
and can be of different imaging modalities. However, they can also come from
longitudinal data of the same patient to detect pathologies or to quantify disease
progression. Depending on the task at hand one chooses a specific registration
method. The state-of-the-art medical image registration techniques are presented
in recent surveys [1,2]. In addition to robustness, a key performance measure of
these techniques is accuracy.

In medical images where sparsely distributed blood vessels are the main
available landmarks, quantifying the registration accuracy is challenging. The



most common way to quantify the registration accuracy of such images is to
use the vessels’ skeleton in the two images and evaluate the distance between
them [3]. However, extracting the skeleton is not a trivial task. Some parts may
be missing in one of the images and it is also sensitive to noise. Moreover, it
does not provide sub-pixel resolution and results in the loss of all the valuable
intensity information. Conventional metrics such as intensity difference, cross
correlation, and mutual information fail either to handle differences in contrast
or defocus between registered image pairs. In addition, these metrics do not
provide the spatial registration error in pixels, which is crucial to determine if the
registration result meets the required level of accuracy for a certain application.

Other evaluation approaches include visual inspection of the registration
result in an overlay mode, comparing the obtained transformation with the
“ground truth” transformation, or testing its transitivity [4, 5]. Visual inspec-
tion is a very fast way to find large registration errors. As such, it is useful for
determining the robustness of an algorithm and to find outliers, but it is not
suited for a quantitative assessment of the accuracy for images with small reg-
istration errors. Since a ground truth is often not available, one has to simulate
a given transformation to use this method for evaluation. Simulated transfor-
mations, however, will only cover those deformations that are part of the model
and will therefore miss some of the deformations encountered in practical cases.
An alternative is to evaluate the transitivity of the algorithm, but this does not
guarantee a high registration accuracy because the registration errors may be
correlated. Another major limitation common to all of the above approaches is
that they do not provide an objective error measure in pixels.

In this paper, we address the problem of assessing the registration accuracy
of images in which the vasculature is the main feature. The proposed method
uses the vessels as landmarks to quantify the accuracy of the alignment in the
direction perpendicular to the vessels. The presence of vessel branches with var-
ious orientations ensures a complete accuracy assessment. Thus, the proposed
mismatch measure is a quantity related to the physical displacements occurring
across the vessels.

A scale and orientation adaptive quadrature filter bank has been used to
decompose the 1D profile perpendicular to a vessel in the difference image into
an odd and an even component. The ratio of the energy of the odd component to
the total energy of the vessel profile of the two images provides a measure that
is directly related to the registration error. This measure is invariant to other
disturbing factors due to imaging and illumination artifacts.

We applied our method to assess the accuracy of registered red-free fundus
photos acquired for diabetic retinopathy screening. We show that the proposed
error measure is strongly related to the spatial registration error in the registered
images, thus it can be used as a tool in the longitudinal screening of fundus
images for disease progression.
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Fig. 1: Example of registered fundus image pairs. (a) Macula and optic nerve-
centered images. (b) Normalized and registered output image. (c) The difference
image in the overlap region. Zero difference is depicted in grey.

2 Material and Method

2.1 Material

The proposed algorithm was validated on fundus images obtained from an ongo-
ing diabetic retinopathy screening program at the Rotterdam Eye Hospital. 20
diabetes patients who visited the hospital in two consecutive years for diabetic
retinopathy screening were included. During each visit, four images of macula-
centered, optic nerve-centered, superior, and temporal regions of the retina were
acquired from each eye. For the sake of simplicity, we will use macula and optic
nerve-centered images of each patient.

2.2 Registration Method

Although the proposed quantitative accuracy assessment method can be applied
to evaluate the accuracy of any registration method for images with vessels,
we demonstrate it here by applying it to a hierarchical non-rigid fundus image
registration approach [6]. The method registers image pairs using intensity as
well as structural information of the retinal vasculature after normalization of the
green channel for luminosity and contrast variation over the full field of view. The
normalized images are registered based on a vasculature-weighted mean square
difference (MSD) similarity measure and a multiresolution matching strategy
coupled with a hierarchical registration model. Figure 1a and 1b show an example
of individual image pairs and the registered normalized mosaic. Figure 1c shows
the difference image in the overlap region.

2.3 Registration Accuracy Assessment

When evaluating the registration accuracy of medical images in which the vas-
culature is the main feature, it is of importance to be able to differentiate vessel
misalignments (Fig.2d) from other contributions to the MSD such as contrast
differences (Fig.2b) and (de)focus differences (Fig.2c).
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Fig. 2: Examples of registered image patches with the corresponding vessel pro-
files and the difference profile. (a-c) Correct alignment. (d) Misalignment.

In cases where the alignment is correct (Fig.2a-2c), the profiles of the dif-
ference image perpendicular to the aligned vasculatures shows an even signal
whereas a misalignment yields an odd (Fig.2d) signal. Hence, a new measure
called relative vessel misalignment energy (RVME) which exploits this signal
property of the difference image is defined to assess the registration accuracy.
The RVME measure is expressed as the energy of the odd component of the
vessel profile in the difference image divided by the total energy of the two
corresponding vessel profiles:

RVME =
E
(
Sodd,⊥(Idiff,p)

)
E
(
S⊥(I1,p1)

)
+ E

(
S⊥(I2,p2)

) , (1)

where E
(
Sodd,⊥(Idiff,p)

)
is the energy of the odd component of the difference

image signal profile perpendicular to the vasculatures and centered at a point p.
E
(
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)
and E

(
S⊥(I2,p2)

)
are the energies of the signal profiles perpendic-

ular to the vasculatures of the registered image pairs I1 and I2 centered at p1

and p2, respectively.

Quadrature filters. In order to compute the RVME, the odd and even parts of
the signal perpendicular to the vessel need to be extracted. A quadrature filter
q(x) gives the analytic representation of a signal that has been filtered by a filter
h(x). Such a filter is defined as q(x) = h(x) + i ·H

(
h(x)

)
, where H is the Hilbert

transform.

By choosing an even filter h(x), the real and imaginary parts of q(x) allow
to differentiate between even and odd profile signals, respectively. Therefore,
the analytic representation f of the profile signal S, centered at a given point,
becomes:

f = S(x) ∗ q(x) = S(x) ∗ Re
(
q(x)

)
+ i · S(x) ∗ Im

(
q(x)

)
(2)
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If the profile signal is even, then the response to the filter will be real. However,
the response to an odd signal profile will be imaginary, which is in agreement
with the models in figure 2. We can thus use this method to evaluate the RVME.

Orientation space. As the Hilbert transform needs to be applied to the signal
in a certain direction, we adopted an orientation space filter bank [7, 8]. The
filter bank is composed of rotated versions of an orientation selective quadrature
filter. The orientation selectivity and scale selection can be best described in the
frequency domain representation of the filter [8]:

Φ(θ, w) = exp

(
− (Nθ)2

2π2

)
︸ ︷︷ ︸
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·
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)
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, (3)

where θ is the orientation angle, w the radial frequency, N the number of filters
in the bank which defines the angular resolution, wc the frequency at which the
filter attains its maximum, and bw the standard deviation of the radial Gaussian.
These parameters were set based on the vessels’ width and orientation.

The N filtered images are relatively noise-free and the signal in each image
represents a specific orientation range, solving the problem of spurious or missing
vessel skeleton and simplifying the computation of the RVME. Eq.(1) becomes:

RVME =
E
(

Im(Idiff ∗ qθ̂)
)

E(I1 ∗ qθ̂) + E(I2 ∗ qθ̂)
(4)

where qθ̂ is the spatial domain representation of the orientation space filter cor-
responding to the orientation of the vessel.

Vessel detection and width estimation. In order to match the scale and
orientation of the quadrature filters, each vasculature along with its width and
orientation must be identified. The vasculature region is first detected from one
of the registered images using a multi-scale (σ ∈ [1, 9] pixels) vessel enhancement
approach [9] followed by connected component analysis . A vasculature mask is
then obtained by keeping objects larger than 2000 pixels, discarding possible
noise. This mask is further reduced to a skeleton, and its junctions are removed,
leaving only segments of the skeleton along which the registration assessment
can be done. It should be noted that even though we used the skeleton, the
assessment can also be done on any point along the vessel segment, solving the
requirement of accurate skeleton detection.

Once the skeleton is detected, the width and orientation of the vasculature
segments are estimated by exploiting the properties of the local principal cur-
vature computed from the second-order derivatives of the image. Given a scale-
normalized Hessian matrix of each pixel x = (x, y):

H(x;σ) = σ2

[
Ixx(x;σ) Ixy(x;σ)

Ixy(x;σ) Iyy(x;σ)

]
, (5)

where each element I··(x;σ) is the convolution of the image at location x with a
second-order Gaussian derivative kernel of scale σ along the specified subscript .
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For each vasculature pixel, the eigenvalues λ1 and λ2 (|λ1| � |λ2|) of H
correspond to the local (intensity) curvature values across and along a vessel,
respectively. The width is approximated by selecting the scale σ̂ which maximizes
the largest principal curvature λ1:

σ̂ = arg maxσ λ1(σ) (6)

Hence, at each evaluation point, the quadrature filters were tuned to match
the vessel width (2σ̂) and the orientation of the vasculature, determined by the
eigenvector corresponding to λ1(σ̂).

3 Experiments and Results

3.1 Parameter Optimization

The orientation space filter bank (Eq. 3) parameters (N,wc, bw) were optimized
to match the width and orientation of vessels. The angular resolution N was
set to 15 and the optimal values of the remaining parameters are summarized
as wc = bw = 0.15 σ̂−1. These parameters were the same for all fundus data,
healthy and diseased.

3.2 Evaluation

In order to determine the relation between the RVME measure and the spatial
registration accuracy, an evaluation was done on registered image pairs. For each
pair, a mismatch was introduced by translating one of the image pairs horizon-
tally (but any other direction would suffice as well) by a known amount before
calculating the RVME for vessels running perpendicular to the imposed dis-
placement. The translation was increased by 1 pixel until the vessels were fully
misaligned. Figure 3a shows the evaluation results stratified by vessel width.
Since the orientation selective filters have footprint that runs parallel to ves-
sels, the result of neighboring pixels are correlated, thus evaluation was done at
randomly sampled points uniformly distributed across the entire overlap region.
Each point on the graph is the average over 50 evaluation points selected from
the 20 registered fundus image pairs.

The results show a strong correlation between the RVME measure and the
imposed misalignment (registration error). Moreover, figure 3b shows the RVME
measure of various vessel widths have an approximately linear correlation, which
indicates that it is robust to variation in the vessel width. Hence, given the
RVME value and the estimated vessel width, the spatial registration accuracy
can be determined in a straightforward manner. This evaluation showed that the
proposed measure assesses the registration accuracy with a bias of -0.1 pixels and
a precision (standard deviation) of 0.9 pixels.

In the example shown in figure 4, even if the registration of two images
is perfect, the difference image at the location of blood vessels may show a
significant residual signal. For example, in figure 4a noise leads to an MSD of
0.78. In figure 4b, the contrast difference between correctly aligned vessels leads
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Fig. 3: Registration assessment results. (a) RVME as a function of misalignment
in pixels. (b) Correlation between RVME and misalignment as a function of
vessel width.

Fig. 4: Examples of difference image patches. Corresponding MSD (for the entire
patch) and RVME values (at the red-cross locations) are shown on each patch.

to an MSD value as high as in case of a clear misalignment, while the RVME
remains low. Figure 4c shows an example of a well-aligned vessel suffering from
a clear difference in (de)focus, resulting in a significant MSD. In contrast, these
examples show a very small value for the proposed RVME measure, indicating a
very accurate registration. In case of actual registration errors, such as in figure
4d, the RVME is close to 1, corresponding to the expected value for a registration
error of about the width of a vessel. To evaluate the robustness of the RVME
measure to higher noise levels than the noise available in the normalized images
which is σ2

noise = 1, a Gaussian noise was added to each of the registered images.
Evaluation results at 5 randomly selected points show that the RVME measure
barely changes with the noise in the registered image pairs (Fig.5).

4 Discussion

In this paper, a new way of quantitatively assessing the registration accuracy
of images in which the vasculature provides the main landmarks has been pro-
posed. An accuracy measure (RVME) which exploits the even and odd signal
property of the 1D profile across the vessels in the difference image is defined
and used to determine the registration accuracy relative to the width of a vessel.
The RVME measure is translated to the spatial registration accuracy in pixels
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Fig. 5: Comparison of RVME measures at 5 randomly selected evaluation points
on incorrectly registered image pair before (left image, σ2

noise = 1) and after
adding Gaussian noise (right image, σ2

noise = 48).

by multiplication with the estimated vessel width, enabling an objective and
quantitative registration accuracy assessment.

We demonstrated the method by applying it to registered red-free fundus
images in order to quantify a misalignment error up to the full width of the
widest vessel. Evaluation results showed that the RVME, in contrast with the
MSD, does not depend on the intensity variation between registered image pairs,
i.e. it is invariant to factors such as contrast, (de)focus, and noise (Fig. 4-5). It
provides an excellent prediction of the imposed displacement (bias of -0.1 pixels
and a standard deviation 0.9 pixels) in a controlled experiment.
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