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Abstract. Segmentation of hemorrhages helps in improving the effi-
ciency of computer assisted image analysis of diseases like diabetic reti-
nopathy and hypertensive retinopathy. Hemorrhages are blood leakages
lying in close proximity to blood vessels, which makes their delineation
from blood vessels challenging. We use multiresolution morphological
processing with a view of achieving perceptual grouping of the hemor-
rhagic candidates occurring in variable shapes, sizes and textures. We
propose a novel method of suppression of candidates lying on blood ves-
sels while attaining a good segmentation of true hemorrhages including
the ones attached to the vessels. Evaluated on 191 images having different
degrees of pathological severity, our method achieved > 82% sensitivity
at < 7 false positives per image (FPPI). We further observe that the
sensitivity is higher for candidates with bigger sizes.

1 Introduction

Retinal hemorrhages are signs of retinal disease or injury, observable as dark
patches indicative of bleeding. On a retinal image, hemorrhages appear as dark,
reddish structures of various sizes: dot hemorrhages are small isolated red spots,
blot hemorrhages are irregular, dotted textured, localized circular structures
while flame shaped hemorrhages are fan-shaped bleed lesions oriented towards
the optic nerve head.

Hemorrhages are a clinical sign of diseases like diabetic retinopathy, and
hypertensive retinopathy. Clinical guidelines specify that the location and extent
of hemorrhages is a direct indicator of the severity of disease [1]. Detection and
segmentation of hemorrhages is therefore an important component for computer-
assisted screening and grading.

1.1 Prior work

The most common approach for detection of hemorrhages uses morphological
processing for selecting candidates, followed by region growing and supervised
classification for rejecting false candidates. In [2] a morphological linear top hat
method is used for detecting dot hemorrhage, and is adapted to multiple scales



Fig. 1. The irregular shape of blot hemorrhages and streak shape of flame hemorrhages
at different sizes presents wide variability in the appearance of large hemorrhages,
making their characterization, detection and segmentation a non-trivial task.

for detecting larger hemorrhages. The method uses the complement image and
performs multiple linear top-hats for progressively de-enhancing vessels in each
scale. Candidates are detected by thresholding and region-growing. The method
also performs local vessel detection in the vicinity of candidate and discontinu-
ity assessment. In [3] a multiscale morphological reconstruction method is used
for finding local minima, followed by identification of lesion area by dilation
with incrementally sized structuring elements and study of edge slope variation.
Acharya et al. [4] performed morphological opening with optimally adjusted
structuring elements for extracting vasculature separately, and dark structures
including hemorrhage and vessels. Hemorrhage candidates were obtained by sub-
traction followed by denoising.

Among the methods which do not use morphological approach for candidate
detection are a multi-scale Gaussian matched-filter with entropy thresholding
used in [5] for detection of hemorrhages. In [6] candidate detection is done by
normalized cross correlation template matching with a circular template at dif-
ferent radii, followed by region growing to extract hemorrhage candidates. A
recent method for large hemorrhage detection [7] uses gradient scale-space and
watershed transform, performs partitioning of image regions, and identifies par-
titions corresponding to hemorrhages using supervised learning.

Hemorrhages can be described using two main characteristics: dark appear-
ance (low intensity) and irregular, amorphous shape. However, intensity in hem-
orrhages is similar to vessel structures (and fovea), and polymorphic shape of
hemorrhages makes exhaustive modeling intractable. It has been reported in
literature that vessels and fovea are the two main false alarms in hemorrhage
detection [6]. Hemorrhages being a sign of blood-related pathology, might present
themselves in close proximity to vessels, and sometimes overlap or occlude them.
Though much research has been directed at blood vessel detection, the perfor-
mance of published algorithms on pathological cases has not been established,
especially when there are hemorrhages which appear connected to vessels [8].

In this work we address the detection and segmentation of hemorrhages show-
ing wide variability in size, shape and appearance, including irregular shaped
hemorrhages, blots, flames, bleeding and hemorrhages attached to vessels. We
use multi-scale processing method for simplifying the characterization of hemor-
rhage types. Our approach proposes a novel method for rejection of false alarms
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on blood vessels using a filter-set based on morphometric properties, and seg-
mentation of hemorrhages by removing curvilinear parts of detected candidates
which could actually be vessel. We also use a set of novel features derived from
vesselness analysis within each candidate.

2 Our approach

Our approach builds a multiscale morphological pyramid followed by carrying
out operations which take place in each scale (candidate detection, false alarm
rejection), merging of candidates from different scales, refinement of segmen-
tation(resolving adjoined hemorrhages, pruning vessels in regions), and region
ranking as shown in fig.2.

Fig. 2. Flow diagram of our proposed approach

2.1 Candidate detection

We construct a multiscale morphological pyramid (fig.3) Π, where the level-
0 of the pyramid is the opening of green channel Ig, and each following level
stores a successive opening (with resampling). We use multi-scale morphological
opening pyramid for homogenizing the freckled texture within the hemorrhage
and improving the edge definition of the object of interest in scale space.

Region-growing segmentation: At each scale, we identify the centroids
of the connected set of pixels with same intensity, surrounded by pixels having
greater intensity as local minima. The local minima with the intensity lying in
the darkest 10% range of the contrast-normalized image are used as initialization
points for region growing process.

We use an iterative intensity-based region growing where at each iteration the
region adds neighbor pixels whose intensity is within a certain contrast limit from
the current region mean. At each scale of Π, the local contrast is estimated and
normalized by dividing local background(Bgi) from Πi. The contrast-normalized
image, Pci =

Πi

Bgi
− 1 enables the use of a constant parameter for contrast while

region-growing.
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Fig. 3. Morphological opening pyramid shown for 4 levels. Contrast of edges becomes
stronger and fuzzy regions within the lesion become better homogenized in scale space

For restricting the growth of vessel seeds into branches and bends, we set
stopping criteria based on the displacement of the center of mass of the currently
growing region. Due to downsampling, the resolution of the branching angles of
the vessels decreases. The opening operation with a disk structuring element
merges the close-by lying vessels especially the branches of the vessels. Thus we
set stopping criteria based on instantaneous region structure in every growth
step, and examine morphological attributes of the region grown so far: solidity,
major axis length and minor axis length to restrict the region from growing into
the merged bifurcations.

2.2 Rejection of false alarms

For performing rejection of vascular false alarms in Ei, we examine each grown
candidate by a sequence of morphological tests based on five key properties:
eccentricity ε, width η, elongation κ, aspect ratio γ and truncation. Elongation
κ is defined as the standard deviation of Euclidean distances of the perimeter
pixels from centroid of the candidate. Truncation (VTR) is quantified by the
number of vessel pixels removed from the candidates by morphological opening
with a line structuring element oriented in the direction of minor axis and its
length dependent on minor axis length of the object. Apart from false alarm
rejection, VTR helps in pruning the candidates by removing the vessel pixels.

Table 1. Table showing the percentage of lesions and vessels retained in each false
alarm rejection stage (percentage of each stage is calculated separately)

VRS-1 ELA VRS-2 VTR

Condition High ε,
small η

κ×γ <
10

Very
small η

Total

True hemorrhage
%retained

100% 97% 63% 100% 99%
Blood vessel 63% 61% 78% 96% 56%

Vessels per lesion 9.42 5.375

Table 1 shows the conditions used in the sequential stages of false alarm
rejection: VRS-1 (vessel rejection 1), ELA (elongation analysis), VRS-2 (ves-
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sel rejection 2), and VTR. Candidates passing ELA are not scrutinized further,
whereas those failing the condition are checked against VRS-2 and VTR succes-
sively. The table indicates the percentage of true hemorrhages and blood vessels
retained by each stage of rejection, and the number of vessels retained per true
hemorrhage. In a sample subset of 16 images having manual vessel annotation,
the number of vessels per hemorrhage in Ei was 9.42. At the end of the sequen-
tial rejection, the vessels per hemorrhage drops to 5.375 (44% vessel rejection),
for a 99% retention of true hemorrhages.

2.3 Merging and Refinement of candidate segmentation

The above steps for candidate detection and false-alarm rejection operate on
each level of the pyramid. The regions from all the levels are merged using
logical OR operation after resampling the binary outputs to a common size
(size of Π1). This step while ensuring accumulation of all possible candidates,
could potentially lead to altering the shape of candidates, adjoint candidates
merging into one, and vessel regions clumping with candidates. Such candidates
are selected by measuring their area and solidity(area to convex area ratio).
Within these candidates, the locations where the cross sectional widths change,
are identified by morphological operation. We perform top-hat morphological
operation with linear structuring element rotated in different orientations at a
resolution of 10o. The pixels which get removed in more than five orientations
belong to the non-curvilinear part of the candidates.

Fig. 4. Top-left and bottom-left subimages show hemorrhage candidates with their
corresponding refinement of candidate segmentation stage output.

2.4 Candidate ranking

We use a supervised learning technique for assigning confidence scores to each
candidate in the range of 0 to 1. At each candidate, we extract a set of features
and the ranking method learns a mapping between the feature values to the
confidence score. We train a two-class statistical classifier such as random forest
[9], and use the posterior probability of the ‘Hemorrhage’ class as predicted
confidence score. Table 2 lists the different types of features we extract at each
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candidate. Among the novel features we use, mean vesselness in the candidate
(found by Frangi filter, Gabor filtering, anisotropic diffusion filtering), tortuosity
of the candidate after skeletonization, standard deviation of ridgeline orientation
within the candidate, and the weighted sum of histogram of ridgeline orientations
weighted about 0o with signum function over angles are specifically targeted at
discriminating vascular candidates.

Table 2. LIST OF FEATURES

Feature Description

Color
Difference between the mean pixel values inside the ob-
ject and in a circular region around the candidate,RGB.
Color within and on boundary in opponency images.

Filter Banks
Gaussian filter Bank:G(σ), Gx(σ), Gy(σ), Gxx(σ), Gyy(σ)
and Gxy(σ), green channel.
DOG filter Bank: σ1 = 4, 8, 12 and σ0 = (σ1/3)+1,RGB.

Texture
Statistics of Gray-Level co-occurrence matrix.
Local range,standard deviation,entropy of each candidate
pixel within a window in green channel.
Schmid Filter Bank: 13 rotationally invariant filters.

Edge Strength Gradient magnitude response

Vessel Enhancement Vessel Enhancement by Frangi vesselness, Gabor filter,
Anisotropic Non-linear Diffusion filtering.

Tortuosity Measure Found using candidate skeleton.

Morphological Properties Minor axis length.

Orientation-based Standard deviation of orientation inside candidate.
Ratio of eigenvalues obtained from Hessian matrix.
Weighted sum of histogram of orientations.

In addition to the features shown in Table 2, we compute a set of features
based on transverse profile modelling of the candidate centreline. We find the
centreline traversing through the candidate connecting farthest points on its
perimeter, by an explorative shortest path algorithm.

We use a Gaussian function to model the transverse profiles of the candidate
at discrete points on the centreline. The parameter σ of the Gaussian approxi-
mates the transverse width at the centreline. From the transverse fits, we extract
the distribution of σ, and find statistical measures like mode, mean, standard
deviation, kurtosis, second moment about mode. These features are specifically
aimed at discriminating candidates with vascular structure from thick flames
and hemorrhages.

Training: We trained a random forest classifier with true and false hemor-
rhage candidates selected from two local datasets having resolutions 2240×1488
and 1280×1024. Totally 191 images were obtained from 58 diabetic subjects in
a clinical setting using dilatation, and 2008 hemorrhage regions were annotated
by a clinician.
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3 Results and discussion

Using the set of 191 images, we performed 10-fold cross validation to sweep an
FROC curve, varying thresholds on the confidence score. Positives are candi-
dates having confidence score surpassing the threshold. True-positives are pos-
itives overlapping with the expert-marked ground truth annotation while false-
positives do not overlap with the ground truth.

Fig. 5. (a)FROC curve - Most hemorrhage literature usually report ROC curve convey-
ing performance of image-level decision(presence of hemorrhage). FROC is more apt
to express hemorrhage detection performance. (b)FROC for varying candidate sizes.

Our method achieves 82% sensitivity at 6.9 FPPI for 191 images, which
includes different degrees of pathology, and complications in the form of choroidal
vessels, proliferative vessels and laser marks. Considering a subset of 91 images,
selected based on absence of the above complications, we observed performance
of 86% sensitivity at 5.5 FPPI. This can be contrasted with the performance of
85% sensitivity, 4 FPPI reported in [6]. Similar to the area analysis presented
in [6], we studied the performance among various sizes of candidates. From the
resulting FROC curves (fig.5) we see that among the higher sized candidates,
the detection sensitivity is higher.

The wide variability in the appearance, color, texture, and morphological
properties among hemorrhages has resulted in near-uniform distribution of con-
fidence scores on true hemorrhage candidates. The vessel rejection nature of the
features can be seen from the confidence value distribution of candidates lying on
the blood vessels (fig.6) which demonstrates that > 90% of them have confidence
value ≤ 0.2.

4 Conclusion

Our approach presents a high-quality hemorrhage detection algorithm where
unlike previous published works, we use pre-emptive region growing technique
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Fig. 6. (a) Distribution of confidence scores among the positive and negative candi-
dates. The overlaid curve in red illustrates the confidence value distribution of the
candidates lying on the blood vessel ground truth (marked by an expert ophthalmolo-
gist for 16 images).(b)Subimages showing detected positive hemorrhagic regions

to prevent the candidates from growing too much into vessels, structure-based
properties for rejection of blood vessel candidates while retaining hemorrhagic
candidate, and a set of novel features based on vesselness within the candidates to
successfully discriminate vessels from hemorrhages. The performance achieved is
comparable with the state of art. Based on our experiments,we can infer that our
method provides higher sensitivity of detection. Visual inspection indicates good
segmentation of big hemorrhages. We plan to use higher level image information
for the suppression of macula(the other prominent confounder), in our future
work.
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