Prediction of Treatment Response from Retinal
OCT in Patients with Exudative Age-Related
Macular Degeneration

Hrvoje Bogunovié¢!, Michael D. Abramoff?!:34  Li Zhang', and Milan Sonka!-?

!Department of Electrical and Computer Engineering
?Department of Ophthalmology and Visual Sciences
3Department of Biomedical Engineering
The University of lowa, Iowa City, Iowa, USA
4Department of Veterans Affairs, Iowa City, USA
{hrvoje-bogunovic,michael-abramoff,li-zhang-1,milan-sonka}@uiowa.edu

Abstract. Age related macular degeneration is a major cause of blind-
ness and visual impairment in older adults. Its exudative form, where
fluids leak into the macula, is especially damaging. The standard treat-
ment involves injections of anti-VEGF (vascular endothelial growth fac-
tor) agents into the eye, which prevent further vascular growth and leak-
age, and can restore vision. These intravitreal injections have a risk of
devastating complications including blindness from infection and are ex-
pensive. Optimizing the interval between injections in a patient specific
manner is of great interest, as the retinal response is partially patient-
specific. In this paper we propose a machine learning approach to predict
the retinal response at the end of a standardized 12-week induction phase
of the treatment. From a longitudinal series of optical coherence tomog-
raphy (OCT) images, a number of quantitative measurements are ex-
tracted, describing the underlying retinal structure and pathology and its
response to initial treatment. After initial feature selection, the selected
set of features is used to predict the treatment response status at the
end of the induction phase using the support vector machine classifier.
On a population of 30 patients, leave-one-out cross-validation showed
the classification success rate of 87% of predicting whether the subject
will show a response to the treatment at the next visit. The proposed
methodology is a promising step towards the much needed image-guided
prediction of patient-specific treatment response.

1 Introduction

The primary cause of blindness in older adults is age-related macular degen-
eration (AMD) [1]. It is a disease which affects the macula of the retina and
destroys the sharp, central vision. The most damaging form of AMD is exuda-
tive or wet AMD, also known as choroidal neovascularization (CNV), which is
caused by the growth of abnormal blood vessels from the choroid vasculature.
The abnormal vessels leak fluid into the macula, leading to its structural dam-
age. Such fluid-filled regions consist of intraretinal and subretinal fluid as well as
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pigment epithelial detachments (PED) that we jointly call symptomatic exudate
associated derangements (SEAD).

A standard and effective treatment for CNV is to inject into the eye anti-
vascular endothelial growth factor (anti-VEGF) agents, which suppress further
blood vessel growth [2]. Such treatment enables restoring the visual acuity close
to normal but requires frequent retreatments, which carries several risks. Besides
the risk of devastating endophthalmitis that can result in blindness and the very
high cost of the drug ($2,000 per injection), the risks of frequent treatments
may lead to outer retinal atrophy and nerve fiber layer loss due to the drugs’
anti-angiogenic effect.

Patients respond differently to anti-VEGF treatments. Thus, the optimal
treatment regime is patient-specific and would consist of the smallest number
of anti-VEGF injections that are still effective. In current clinical practice the
treatment frequency is primarily guided by SEAD presence, which is subjectively
assessed from images noninvasively acquired with optical coherence tomography
(OCT). This calls for designing objective, patient-specific treatment dosing reg-
imen.

Most of the prior work on quantitative analysis of OCT images was devoted
to the difficult tasks of retinal layer and SEAD segmentation [3—6]. The avail-
ability of those segmentation methods now allows for quantitative and objective
analysis of retinal structure and pathology from OCT images. Currently it is not
clear which quantitative indices are associated with desirable anti-VEGF treat-
ment response. In this paper, we attempt to learn the patient-specific treatment
response from the standardized 12-week long induction phase. Using objectively-
defined layer and SEAD morphologic properties extracted from the longitudinal
series of OCT images, we determine associations and predict the outcome of the
induction phase.

2 Materials and Methods

2.1 The Induction Phase

The AMD patients underwent an initial 12-week induction phase during which
treatment and imaging was uniform for all patients. The induction phase was
defined as the process of administration of three intravitreal injections at 4 week
intervals (weeks 0, 4, 8) supplemented by OCT imaging sessions every two weeks
(Fig. 1). After such standardized period, the treatment was patient-specific. In
this work we focus on the treatment’s induction phase only.

Image acquisitions were performed using the commercially available Top-
con spectral-domain OCT scanner (Topcon Inc., Pyramus, NJ), centered on the
macula of the retina. The device acquires anisotropic 3D OCT images having
512 x 128 x 885 voxels with 11.72 x 46.88 x 2.6 pm? spacing, and covering the

volume of 6 x 6 x 2.3 mm?.
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Fig. 1: Illustration of the induction phase of patient treatment, with the denoted
imaging and treatment (in red) time points.

2.2 Retinal Layer and SEAD Segmentation

To quantify the retinal anatomical structure, the layer segmentations are per-
formed with a graph-search based method [3,4]. The method is able to effi-
ciently find the globally optimal solution of multiple interacting surfaces, given
surface cost functions and a set of geometric constraints defining intra-surface
smoothness and inter-surface distance variability. Sets of multiple surfaces are
hierarchically detected starting from the most evident ones and ending with the
most subtle layer interfaces. The method segments ten retinal layers defined by
eleven surfaces from the inner limiting membrane (ILM) to the retinal pigment
epithelium (RPE) (Fig. 2). Even though under the presence of SEAD the in-
traretinal layers are not always accurately segmented, general layer properties
are well captured.
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Fig.2: Example of ten layer (eleven surface) segmentation.

The layer segmentation is followed by automated intraretinal and subreti-
nal SEAD segmentation method [7]. Although the shape, size, and location of
fluid regions varies, SEADs exhibit layer dependent properties. For example,
intraretinal fluid normally appears above the outer plexiform layer and has a
cystoid shape while the subretinal fluid lies beneath the outer segment layer but
above the RPE. These properties are used by the segmentation method, which
consists of a supervised voxel classification approach. During the training phase,
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for each image voxel, a set of features composed of textural, structural, and layer
location information is calculated. During the testing phase, for each voxel a k-
nearest-neighbor classifier is employed to assign its probability of belonging to
a SEAD. Lastly, the probability map is thresholded at 50% probability level to
obtain binary SEAD segmentations (Fig. 3). No further post-processing of the
resulting binary segmentations was performed.

(a)

Fig. 3: Example of intraretinal SEAD segmentation (in green).

To segment the remaining sub-RPE regions of SEADs, a recently proposed
method was used [6]. The method extends the previously segmented layers by
adding outer retinal—subretinal layer (ORSR). It is based on the graph-search
layer segmentation method where by using the image properties describing the
local structural abnormalities it is able to locally increase the inter-surface dis-
tance constraints accordingly. While the method does not detect fluid, it focuses
on segmenting the RPE and the Bruch’s membrane in the presence of PED. The
sub-RPE fluid is subsequently segmented by analyzing the obtained ORSR layer
thickness.

(a) (b)

Fig. 4: Example of a correctly identified Bruch’s membrane surface (yellow) in
the presence of PED, and the resulting sub-RPE fluid segmentation (green).
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2.3 Feature Extraction and Tretment Response Prediction

For each patient, from its longitudinal series of images and derived segmenta-
tions, we extract a set of quantitative features characterizing the underlying
anatomy. To limit the dimensionality of the resulting feature vector, we divide
the retina into nine subvolumes (Fig. 5) inspired by the partitioning used in
Early Treatment Diabetic Retinopathy Study (ETDRS). The simplified ETDRS
grid is centered on the fovea, which was detected automatically as a local dip
in the ILM surface. However as heavily diseased patients can have large reti-
nal distortions, in this pilot study the fovea was not always easily identifiable
and its locations have been visually inspected and corrected if needed. Once the
subvolumes are defined, a number of quantitative values is extracted for each
subvolume, and the entire parafovea and perifovea. The features are based on
the properties of the image intensity distribution and the segmented layers and
SEADs (Table 1). In order for the features to correspond across subjects, all left
eye scans were mirrored to conform to the scans of the right eye.

Perifovea
Superior

Parafovea
Superior

Perifovea
Inferior

(a)

Fig.5: Subvolume analysis. (a) Nine regions of interest defined by ETDRS. (b)
The corresponding grid with total retinal thickness mean (std) values overlayed
on the OCT projection image.

The set of extracted features are employed for the task of predicting whether
the subjects will respond to the anti-VEGF treatment. The subjects were as-
sumed to be in the non-responsive group if the total segmented SEAD volume
present at the start (week 0) increases, stays the same or drops by less than
20% at the end of the induction phase (week 12). Since there are seven imaging
sessions (week 0 — week 12), the features are extracted from the first six imaging
sessions of each patient producing a total of 756 features. To take into account
the relation between the features measuring the same characteristic at different
time-points, the features in week 2 - week 10 are made relative to their value
at the start of the treatment (week 0). Furthermore since such a large number
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Table 1: Set of features computed per image per subvolume of interest.

Feature Description
Intensity Mean, std, skewness and kurtosis
Layer Mean and std of the total retinal thickness
Total volume, 2D en-face area
SEAD Per entire image only: number of connected components,
(sub-RPE separately) volume of the biggest component, mean and std

distance to fovea, mean and std distance to BMO

of features is much larger than the number of subjects in our dataset, a feature
selection is required. For each feature we evaluate how well it distinguishes be-
tween the two categories (responders, non-responders) by performing a t-test.
Features that lead to statistically significant difference with a p-value < 0.01
were selected. Finally, the selected features were used to train a support vector
machine to predict the treatment responses.

3 Results

The performance of the method was evaluated on longitudinal images forming
the induction phase of 30 patients suffering from wet AMD. Thus, 210 OCT
images were processed and analyzed. In our studied population, there were 70%
(21/30) responders and 30% (9/30) non-responders, which is representative of a
general population.

For descriptive analysis, we look at the change during the induction phase
of the total retinal thickness (TRT) at the fovea (Fig. 6). TRT is often used as
a measure of overall retinal state as the presence of SEAD causes an increase of
TRT. From the figure it can be observed that already after the first treatment
(week 2) the TRT becomes well correlated with its value at the end of the
induction phase. This shows the potential to infer the retinal response after only
one injection.

As a result of feature selection, the extracted features that had the highest
association with the treatment outcome are shown in Table 2. As expected, the
majority of important features are based on 3D and 2D SEAD measurements.
The measurements of SEAD volume and its 2D en-face area, in particular in
the perifoveal area, was found to be highly associated with the response status.
The top three features represent measurements at week 4, which confirms that
observing the retinal response and its status after only one injection can be
indicative of the final treatment response.

Finally, we quantitatively evaluate the performance of the classification task,
i.e., predicting treatment response at the end of the induction phase. Leave-one-
out cross-validation was performed on support vector machine having the radial
basis function kernel. The best classification accuracy obtained by accounting for
the features from all the imaging sessions (week 0 — week 10) was 87% (Fig. 7).
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Fig. 6: Total retinal thickness (TRT) during the induction phase. (a) Population
variability (each subject is a line). (b) Correlation of the TRT at a certain week
with the TRT measured at the end of the induction phase (week 12).

Table 2: Feature Selection: First six features ordered by importance.

Measured at

F D s
eature Description week

SEAD En-Face Area in Perifovea 4
SEAD Volume in Perifovea
Total SEAD Volume

4
4
Mean Total Retinal Thickness in Parafovea 8
Total sub-RPE SEAD Volume 4
SEAD Volume in Perifovea 10

0.9r
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0.75}
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0.65f

0.6 - ; : - ’
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Fig. 7: Classification rate as the selected features are becoming available with
the progress of the induction phase.

4 Conclusion

In this paper, we presented a method to learn the retinal treatment responses
from a longitudinal series of OCT scans acquired during the induction phase.
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To the best of our knowledge, this is the first time such a task was attempted.
The obtained classification rates of 83% after four weeks (one injection) and 87%
after 8 weeks (two injections) are promising for achieving early prediction of the
subject’s response. Additional contribution is the identification of quantitative
features which are most strongly associated with the treatment outcome. The
measurements of SEAD volume and its 2D en-face area, in particular in the
perifoveal area, were found to be highly associated with the response status.

The study has two main limitations. First, the population size (30 patients)
is small. This is mainly due to the difficulty of recruiting patients that are able
to follow a long and strict imaging and treatment protocol, which is even more
involved than the already-demanding sequence of standard-of-care imaging and
treatments. This further motivates our study and the need to differentiate be-
tween responders and non-responders as early as possible. Second, the quantita-
tive measures extracted from OCT images of such diseased patients are still not
sufficiently validated. Both the layer segmentation in the presence of a disease
and the SEAD segmentation are difficult and still-unsolved tasks. As a conse-
quence, our responder /non-responder categorization could have been affected by
the segmentation errors.

Future work is to extend the study to the subject-specific treatment phase,
to predict the time to retreatment or the number of required injections per year.
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