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Abstract. The earliest sign of the diabetic retinopathy is the appear-
ance of small red dots in retinal fundus images, designated by microa-
neurysms. In this paper a scale-space based method is proposed for the
microaneurysms detection. Initially, the method performs a segmentation
of the retinal vasculature and defines a global set of microaneurysms can-
didates, using both coarser and finer scales. Using the finer scales, a set
of microaneurysms candidates are analysed in terms of shape and size.
Then, a set of gaussian-shaped matched filters are used to reduce the
number of false microaneurysms candidates. Each candidate is labeled
as a true microaneurysm using a new neighborhood analysis method.
The proposed algorithm was tested with the training Retinopathy Online
Challenge (ROC) dataset, revealing a 47% Sensitivity with an average
number of 37.9 false positives per image.
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1 Introduction

Diabetic retinopathy (DR) is one of the major causes of visual loss in the de-
veloped world. This disease can be prevented from causing blindness if treated
in early stages, where the detection of microaneurysms (MAs) has proven to
be a key factor [1]. Furthermore, it was found that the appearance and disap-
pearance of the MAs in the initial stages of the retinopathy, designated by MA
turnover, allows retinal experts to control the evolution of the disease [2]. Hence,
an automatic detection method for the MAs would provide an invaluable help in
the diagnosis and progression control of diabetic retinopathy. This is currently
done manually, being a laborious task and very susceptible to observer error
and fatigue. Although the recent research that has been developed, automatic
detection of MAs is far from being trivial. The variations in size, shape, the
influence of other retinal structures and illumination variation between retinal
images, makes the automatic MAs detection and recognition very challenging.
Most of the proposed methods for the detection of MAs follows a sequence of
operations: Image preprocessing, candidate extraction, and classification [1, 3, 4].
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Fig. 1: Retinal image with microaneurysms labeled by the proposed method. The
black arrows represent detected microaneurysms.

The preprocessing stage aims to reduce noise and improve contrast. The candi-
date extraction stage uses a segmentation technique to determine the maximum
possible number of MAs candidates. Finally, the classification stage extracts
some local features, used to classify MAs candidates as true or false using a
supervised learning method. Examples of this state-of-the-art methods are by
e.g. [5-8]. Other methods were proposed that do not require supervising classi-
fication like [1,9]. In this paper, a new method is proposed that do not require
any supervised classification.

2 Methods

The proposed method comprises several steps. The first step is the construction
and definition of the scale-space. Based on the defined scale-space, a segmenta-
tion of the vasculature is performed followed by the preliminary determination
of MAs candidates. Next, a set of finer scales are used to reduce the microa-
neurysms candidates using a set of gaussian-shaped matched filters. Finally,
each candidate is labeled as a true microaneurysm using a new neighborhood
analysis. Since one of the main characteristics of MAs is its small size, a detailed
evaluation of the influence of the scale is also presented.

2.1 Scale-space definition

The green channel component I of each RGB retinal image is selected, since it
offers the best contrast and provides the most relevant clinical visual informa-
tion [10]. No contrast normalization or enhancement is performed. Next, if I
has either a width or height smaller than 1000 pixels, it is proportionally resized
using a bicubic interpolation, leading to a dimension of 1000 pixels in the smaller
direction. Since MAs have a circular shape with a gaussian profile, they are ideal
objects to be analysed using a scale-space approach [8]. Furthermore, as pointed
in [11], a selective noise reduction process that retains the contrast of MAs is
fundamental for an effective MA candidates extraction. Using the definitions
of the linear scale-space image representation [12], a family of derived images
is defined by the convolution of I5(x) with the Gaussian filter g(x;t), given
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2
by L(x;t) = g(x;t) * Ig(x), Vt, where g(x;t) = \/217'156_%' 2t is the variance
of the Gaussian filter, which defines the scale level. Larger ¢ values, result in
stronger smoothing of I (x), removing the details that are significantly smaller
than ¢ [12]. Since MAs are relatively small retinal structures, the Gaussian filter
must provide a slow evolution and effective noise reduction while the features of
interest are preserved. Hence, the gaussian kernel with a variance o2 = ﬂ/ 2,

was applied,
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Since o2 = 2t, the parameter ¢ can be defined at N different scales according
to t, = n%, with n € {1,..., N}. The Gaussian scale-space representation is
defined as L(x;t,), with n € {0,....,N} (n = 0 represents the resized initial
image). In this work N was set to 10. Considering the image L(x;t,) as an
intensity surface, it is possible to describe the local shape characteristics of an
image in a defined scale and coordinates using the Hessian matrix,

H(X; tn) - Lyoc(x; tn) Lyy(x§ tn) .

Lyo(X5tp), Lyy(x;ty,) and Ly, (x;t,) are the second-order partial derivatives of
L(x;t,) evaluated at the coordinates (x; t,,). It is also possible to define the mean
curvature at the scale ¢,, as, K(x;t,) = (M (X;tn) +Aa2(X; 1)) /2, where Ay (x;t,)
and Ai(x;t,) are the minimum and maximum eigenvalues, respectively, of the
Hessian matrix.

2.2 Vasculature segmentation

To perform the vasculature segmentation, K (x;t,) is normalized between 0 and
1, followed by a histogram equalization (64 levels), denoted by Kpe(x;t,). This
procedure enhances dark regions like vessels and MAs. For an effective vascula-
ture segmentation both fine and thick vessels must be consider, i.e., both finer
and broader scales must be analysed. Furthermore, at each scale only the regions
in Kpe(x;t,) with high response are relevant. Hence, the vascular segmentation
V can be calculated by thresholding Kp.(x;t,) by o at each scale ¢, and sum-
ming the result across the previous described scale-space, i.e. V = 22’:1 (Khe,,)
with Kpe, = Kpe(X;t,) when is larger or equal than o and 0 otherwise After
testing, o was set to 0.95. Then, V is binarized by replacing all values above 0
with 1, creating V3. To improve the vascular segmentation, a two-level morpho-
logical closing is applied to V4. The morphological closing operation is defined as
foby=(f®by) ©by where f is a generic 2D function, by is a disk-shaped struc-
turing element with d pixels size, and @ and © are the morphological dilation
and erosion, respectively. Initially a morphological closing with a structuring
element b; is applied to V,. Next, all the regions smaller than 200 pixels are
removed. Finally, a second morphological closing with a structuring element bs
is performed. This two-level closing operation favours the connection of vessels
branches.
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2.3 Initial MAs candidates determination

The determinant of the second-order matrix at scale t,,, given by |H(x;t,)| =
A1(x;t,)A2(x;t,) has a high response to the MAs [13]. Hence, a simple way to
calculate initial MAs regions is by binarizing |H (x;t,)| at each scale ¢, with
an appropriate threshold 8. Since the scale-space was constructed considering
feature preservation across the scales, it was imposed as a condition that the
MA candidate must be present at all binarized scales, i.e., C' = 25:1 |H(x;t,)|p
with |H(x;t,)|s = |H(x;t,)| when is larger than 8 and 0 otherwise. C' can be
understood as the global MAs candidates localization, allowing the assessment
of the existence of MAs in a particular region. The threshold 3 is the parameter
with highest influence in the final results, and a detailed study was made to
assess its influence (Table 1). After extensive testing, 5 was set to 225.

2.4 MAs finer scales assessment

Typically the MAs analysis uses the single scale o = 2 [5,13]. In order to eval-
uate the impact of different scales in the MAs detection, a set of finer scales
was considered and analysed individually. The considered set of scales were
t, = k%, with £ = 2,3,4 and 5. Finer scales than the considered t; were
considered too noisy, while coarser scales results in the lost of significant details.
At the scale t; the MA candidates, defined by C}, are extracted by threshold-
ing Kpe(x;tr) > a. Since the MAs have a roughly circular shape and a small
size, all the regions in C;, larger than 100 pixels and with eccentricity [14]
larger than 0.95 are removed. Next, the regions in C%, that intersect the vas-
cular segmentation V;, or without any region with intersections of the global
MA candidates C are discarded. Finally a gaussian-shape matched filter is used
to define the MA candidates. This filter is a template matching algorithm that
is widely used in the detection of the blood vessels in retinal images [15]. The
kernel can be defined by m(x) = —exp (—22/2s%), V |y| < L/2, where L is
the length of the vessel segment that has the same orientation and s defines the
spread of the vessel intensity profile [15]. For the vessels detection, the kernel is
rotated at all possible vessel orientations and the maximum response from the
filter bank is registered. Since MAs are different from the retinal vessels, a few
modifications must be introduced. A blob detector at the scale ¢;, can be de-
fined as B(x, 1) = Lxx(x,tx) + Lyy(x, i), where B(x, t;) has a larger response
at dark structures as it is the case of MAs. The normalized cross-correlation
R, between a 2D generic function f(x) and the kernel m(x) with a length L,
standard-deviation s and orientation 6, can be defined as R(f(x),m(x, L, s,0)).
After testing, were considered the values L = 10 and s = {1,1.25,1.50, 1.75, 2},
and 6 was rotated by an amount of 10°. Based on this definitions, the operation
given by p = maxvg,s{R(B(x, tr), m(x,10,s,0))} was defined. p represents the
normalized cross-correlation of B(x,t;) with the filter m(x). Theoretically the
minimum value that p can have in MAs regions is 0. It was found after testing
that the regions in C}, with a minimum response of p higher than 0.1 could be
removed, leading to a larger reduction of the number of false regions.
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2.5 MAs neighborhood analysis

At this stage it is required to label the MA candidates as true or false. One
of the main clues for the selection of MAs regarding the retinal background, is
the difference in intensity values between the MA and its surroundings [11]. In
this work a two stages labelling algorithm is presented that relies in the analysis
of the MA and its surroundings. The first stage performs an analysis of the
initial shape of the MA candidate (described in Fig. 2). Initially, a ridge [16]
descriptor and its watershed are calculated. Based on the watershed regions, the
neighborhood of the MA is defined. Next, it is determined if a reshape of the
MA candidate is necessary. Following the algorithm of Fig. 2 some neighborhood
regions might be merged with the initial MA candidate region. This merging is
made at most on two different steps (controlled by the accumulator j). This leads
to a more effective MA labeling. Furthermore, during the reshape process it is
also possible to discard false MA candidates (see Fig. 2 for details). The second
stage in the MA labelling, described in Fig. 3 defines if the remaining reshaped
MA candidates are true or false candidates. In this last stage, the perimeter of
each MA candidate is successively dilated and compared with the neighborhood
regions defined by a watershed function of the ridge descriptor image. If in any
of these dilations the median of the ridge values of the neighborhood is larger
than the median of the ridge values of the dilated perimeter, the candidate is
labeled as a true MA (see Fig. 3 for details).

3 Results

The publicly available Retinopathy Online Challenge dataset (ROC) [17] was
used to analyse the performance of the proposed algorithm. The ROC dataset
is composed of both a Training and a Test dataset, composed of 50 images each.
Only the training dataset was used because is the only one with a groundtruth.
Each scale in the previously defined set t;, was considered and analysed individ-
ually, together with several values of 3. Table 1 summarizes the results for this
evaluation in terms of Sensitivity and mean value of False Positives per Image
(FP/1). Fig. 4 shows the Receiver Operating Characteristic curves (ROCC) for
each scale tj,. Table 1 also reveals that the variation of the scale ¢, and threshold
£ do not have a strong influence in the recognition. These results were expected
since the scale-space was specifically constructed for feature preservation. More-
over, can also be observed that the highest Sensitivity is obtained in the scale ;4.
Hence from the analysed scales, t4 is the best one to perform the MA detection.
The best performance is achieved when 3 = 225, resulting in a Sensitivity of 47%
with 37.8 FP/I. These results are confirmed in Fig. 4 where the scale ¢, have
the larger area under the curve. Moreover, this result reveals to be competitive
when compared with the results achieved in [11], as shown in Table 2. Other
interesting results are highlighted with blue in Table 1. It is also important to
observe that the scale t5 also provides a good performance.
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Evaluate: ]
7= L2Low + 2LoLyLay + L2 Ly, (ridge descriptor)[16]
wt = watershed(r)
1. For each region p € Cy, (a)
1.1.5=0
1.2. Superimpose p with wt (b)
1.3. Remove the region p from wt (c)
1.4. Find the adjacent regions of p, designated p,
(yellow patches of (f))
1.5. For each p, calculate the ridge r median value, p,
1.5.1. If all p, <=0 (red patches at (g))
proceed to 1. (evaluate another p)
1.5.2. else (case any p, > 0 green patch at (e))
Select all p, that have p, > 0,
and merge them with p (d)
1.5.2.1. If j < 1

j=Jj+1
proceed to 1.2.
1.5.2.2. Else

remove p from Cj,
proceed to 1. (evaluate another p)

Fig.2: MA candidate shape definition.

4 Discussion

In this paper, a very effective methodology for the automatic detection of MAs
is presented. Furthermore, this paper provides several important contributions:
1) a space-scale specifically constructed and defined for the MAs extraction, 2)
a new neighborhood analysis to label a MA candidate as a true or false MA, and
3) it performs a detailed analysis of the scale influence in the MAs detection.
Although the method reveals a very good performance, new improvements might
be considered in the future. As indicated in [8,13] contrast normalization and
shade correction can improve the selection of MA candidates. The scales t4 and
t5 result in 0 = 1.68 and o = 1.88 respectively, which agrees with the typical o
value defined in the bibliography [5, 18]. An integration of both ¢4 and ¢5 scales
will also be studied as future work, due to the good results achieved in both
scales.
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(a)

Evaluate:

(as explained in Fig.

1.4. Fore=2to7

1.4.3.If 5 > d,,
label p as MA
proceed to 1.

proceed to 1.

Compute r, as the normalization of r between 0 and 1.

1. For each reshaped region p € Cy,,  (a)
1.2. Find the yellow adjacent regions of p  (b)

1.3. For all the yellow adjacent regions, calculate
the r,, median value,

1.4.1. Evaluate d, = (p@b) —p () y
1.4.2. Calculate the 7, median value of dp, d,

1.4.4. Else if p <=d, Ae =T
remove p from Cj,

(b) (c)

2)

P

Fig. 3: MAs final labeling.
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Table 1: shows the relation between the scales tx and § in the form
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(considering a lesion-based criteria). The highlighted yellow value represents the best
performance. Other interesting results are highlighted in blue. Figure 4 represents the

ROCC for the scales set t.

Algorithm

Mizutani [11]

Sensitivity|[FP/I
45% 27

Our method

47% 37.8

Table 2: Comparison of the results using the ROC Training dataset.
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