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Abstract. We propose a multiple scanner vendor registration method
for pathological retinal 3D spectral domain optical coherence tomogra-
phy volumes based on Myronenko’s Coherent Point Drift and our auto-
mated vessel shadow segmentation. Coherent point drift is applied to the
segmented retinal vessel point sets used as landmarks to generate the reg-
istration parameters required. In contrast to other registration methods,
our solution incorporates a landmark detection and extraction method
that specifically limits the extraction of false positives and a registra-
tion method capable of handling any such noise in the landmark point
sets. Our experiments show modified Hausdorff distance is reduced by a
minimum of 91% between target and registered vessel point sets with at
least 94% of bifurcations correctly overlapping based on ground truth, a
significant improvement over current methods.

1 Introduction

Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive
modality for acquiring high resolution, 3D cross sectional volumetric images of
the retina and the sub-retinal layers, including retinal pathology. Today SD-OCT
is the most important ancillary test for the diagnosis of sight degrading diseases
such as age-related macular degeneration (AMD) and glaucoma [1]. Disease di-
agnosis, assessment, and treatment requires a patient to undergo multiple OCT
scans, possibly using different scanning devices to gauge disease activity, pro-
gression and treatment success. However, this scanning process, combined with
patient motion may result in poor scan spatial correlation, potentially leading
to incorrect patient diagnosis or treatment analysis. Image registration has been
applied to solve this problem using iterative closest point (ICP) in [2] to com-
pare disease states by registering different volumes. However, a major limitation
of ICP is the assumption that every source point corresponds with the closest
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point to it in the target point set which, in retinal OCT, cannot be assumed
in all cases. Accurate and reproducible landmarks are required to register 3D
scans from different time-points and vendors, the most suitable being the reti-
nal vasculature. The authors in [2] apply a landmark detection and point based
registration method that is untested on wet-AMD (used here, a leading cause of
blindness due to blood vessel leakage, opposed to the more common dry-AMD)
and is validated on only a single vendor. In addition, as far as we are aware,
other works in this area focus on OCT to fundus registration [3,4] where also
healthy cases were used.

In Sec.2 we present an automated retinal vessel segmentation method for
landmark acquisition, less susceptible to pathology, and in Sec.3 register using
coherent point drift (CPD), suitable for noisy point sets with limited overlap
and similarity. Our approach is evaluated in Sec.4 on scans from 3 major OCT
vendors (Zeiss Cirrus, Nidek RS3000 & Topcon 3D 2000). We show that in
addition to being suitable for multiple OCT vendors and reproducible (Fig.3),
our method is accurate based on expert analysis of resulting registered retinal
vessels and shows improved performance over current methods.

2 Automated Landmark Extraction

We define an OCT volume as V(Z,X,Y) were Z is the axial, X the primary
and Y the secondary scan directions and is comprised of B-scans slices B4(Z, X)
(2D images perpendicular to fundus where X is the horizontal axis and Z is the
vertical axis). Volume dimensions range up to 1024x512x256 voxels, covering
6mm?>. We denote the retinal pigment epithelium layer (RPE, the bright layer
in the lower retina) for a given B-scan as having a lowest outer surface point
RPES,;y and the difference (RPESg;r¢) between RPES,,;, and the original
RPE outer surface position RPES,4 for a given X column point.

2.1 OCT Scan Pre-processing

Retinal vessels are not clearly visible within SD-OCT scans due to high attenu-
ation of blood. However, shadows are generated as a result of the absorption of
light transmitted from the scanner, visible most prominently in the RPE layer,
and used here to locate the retinal vessels [5]. Firstly each B, is “flattened”
to accurately and reproducibly locate the RPE layer and secondly a composite
“projection” image P is computed from the RPE layers. Flattening adjusts a
given By in the Z axis such that the outer RPE surface has the same Z value
across the X axis, compensating for varying retinal curvatures across different
B;. Using the vendor RPE surface segmentation, each column in By is shifted
in Zby RPESy;sy, flattening the RPE surface as in Fig.1(a).

A cross-section (RPEcg) is taken from the flattened B covering 20 pum
from the outer RPE surface towards the inner limiting membrane (ILM, the
upper most surface of the retina), based on examination of RPE thickness from
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21 training scans across 3 vendors ensuring the clinically significant RPE is in-
cluded. Averaging the column intensities within RPF¢g improves vessel shadow
visibility [5] resulting in a single line profile (RPE p) representing the RPE layer
for a given B;. This process is repeated for each B; creating a composite image
P(X,Y) (where Y is the vertical axis) from all RPE},p ranging in dimensions
from 512x128 to 256x256 pixels.

2.2 Projection Denoising

Each RPEpp discussed in Sec.2.1 features a degree of speckle noise [6] which
hinders the detection system. A block matching based sparse transform domain
collaborative filtering approach [7], applied to P, has shown to be effective. An
initial basic estimate is calculated by first taking block-wise estimates where,
for each block within the image, grouping of similar blocks to the current block
generates a 3D array. Collaborative hard-thresholding is applied to the 3D trans-
formed array coefficients to attenuate the noise. Estimates of the grouped blocks
are obtained by inverting the 3D transform which are then returned to their
original locations within the image. The basic estimate is computed by weighted
averaging (wﬁf{) of all the block-wise estimates that overlap. A final estimate
is then calculated from the basic estimate. For each block, two 3D arrays are
created using block-matching, one from the noisy image and one from the basic
estimate. A 3D transform is applied on both arrays in addition to a Wiener
filter applied to the noisy array using the energy spectrum of the basic estimate.
Estimates of all grouped blocks are generated from the inverse 3D transform on
the filtered coefficients before returning the block estimates to their original po-
sitions within the image. Finally a weighted average (w;“;e) is used to aggregate
all the local estimates to compute the final estimate (7/7"%) as described by
Eqn.1 where x,,, : X’ — 0,1 is the characteristic function of the square support

of a block located at x,,, € X and V" ;Ufe’m are the block-wise estimates.
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An « parameter is specified depending on the level of noise to define the
block size used. Noise filtering with ov = 20 (specifying a relatively small block
size) was found to be most suitable for removing speckle noise while maintaining
the integrity of vessel shadows in cross vendor experiments as seen in Fig.1(c)
compared to the original P in Fig.1(b).

2.3 Pathology Removal & Tiling

In addition to noise, the presence of non-vessel shadows caused by pathology
adversely affects the detection system and their removal is required to prevent
their usage as landmarks. Such shadows appear in P with similar intensity to
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Fig. 1. (a) Exemplar flattened B;. (b) Exemplar original P with (c) denoised P using
a = 20. (d) P from (b) & (c) with pathology shadow removed. (e) Segmented vessel
shadows overlayed onto (d).

vessel shadows but generally possess different size and shape characteristics. Ves-
sels are generally long, thin connected regions, thus the opposite characteristics
can be used to describe pathology shadows. However, due to imaging artefacts
at acquisition and patient motion, the shadows can become distorted and may
feature similar characteristics. Thus to distinguish between these two sets of
shadows, the aforementioned shape characteristics were used as a feature, given
that pathology shadows are amorphous and not thin and narrow. In addition,
they seldom reach the boundaries of P and are are not simultaneously long,
thin and with a low area. For each detected pathology shadow region, randomly
selected intensities from the object boundary are used to fill the pathology re-
gion, masking it from P (Fig.1(d)) while maintaining a similar appearance to
the background. This is repeated for all pathology regions at which point the
masked P is denoised again giving Pay.

Due to the presence of pathology, motion artefacts and noise, intra-projection
intensity and appearance variation is present. Such issues can be limited by
reducing the individual vessel detection window using tiling, denoted as Ppsr.
Thus the search space is reduced to equally sized, non-overlapping tiles in 4 x4,
2x2, 2x1 and 1x2 patterns covering the entire P. Multiple grids are used to
ensure that the vessels are intact within at least one of the grid sizes.

2.4 Vessel Shadow Detection

The vessel enhancement filter proposed in [8] is applied on the Py sub-images
to detect tubular geometric structures and suppress remaining noise and back-
ground. Applied to P, the Taylor expansion approximates the image struc-
ture to the second order resulting in the gradient vector (V, ) and Hessian
matrix (#H, ) computed in z, at scale s. Using eigenvalue analysis of the Hes-
sian, the principal directions in which the local second order image structure is
decomposed are extracted. This results in three orthonormal directions giving
a spherical neighbourhood centred at x,, N,,, mapped by H, to an ellipsoid
with directions given by the Hessian eigenvectors and axis semi-lengths as the
magnitudes of eigenvalues. This ellipsoid describes the second order structure
where eigenvalues are ordered |A\1| < |A2| < |[A3]. Two geometric ratios based on
the second order ellipsoid are used as a dissimilarity measure. The first defines
the deviation from blob-like structures whereas the second distinguishes between
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Fig. 2. Exemplar retinal vessel segmentation showing modelled in red the vessels be-
tween the green ILM surface points and blue RPE surface points.

plate-like and line-like structures. Thus a measure defining second order struc-
turedness of an image is used to distinguish between background and vessel. The
authors explain this measure will be low for the background and larger in regions
of vessels, however the opposite would be true for OCT projection images. This
is due to the vessel shadows appearing dark against a lighter background whereas
the method in [8] was originally proposed for MRA and CTA images which are
commonly interpreted using maximum intensity projection and feature brighter
vessels against darker background. However the dark-to-light distinction is still
present and prominent in Pjsr, as well as similarities such as vessel structures
occupying a small volume of the image as a whole.

Region growing using the highest intensity pixel from the result of the vessel
enhancement filter segments the vessel shadow(s) within each tile of Pp;r. This
process is repeated for each combination of tile patterns, with the intersection of
all candidate segmentations taken as the final result. This can be seen in Fig.1(e)
where the segmented vessel shadows are overlayed onto Pyy.

2.5 Segmented Vessel Point Post Processing

The vessel shadows obtained from P are a 2D representation, however the vessel
structure is 3D and the third dimensional spatial information is important for
volume registration. The segmented vessel shadows are skeletonized by removal
of the boundary pixels until only a single pixel remains along the structure
while preventing the structure from breaking apart. The X and Y coordinate
values for each vessel shadow skeleton point are compared with the corresponding
coordinates from the original vendor segmented ILM to identify the relative
depth (Z) position within the OCT volume. This can be visualized as shown in
Fig.2.

3 Point Based Vessel Tree Registration

In this section, we show the use of CPD registration to align retinal OCT volumes
using the landmarks identified in Sec.2.

3.1 Point Set Registration with CPD

The alignment of two point sets, defined here as the source and target 3D retinal
vessel centrelines obtained in Sec.2, is considered in CPD as a probability den-
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sity estimation problem by [9]. One point set represents the Gaussian mixture
model (GMM) centroids and the other represents the data points. The two point
sets become aligned at the optimum and the correspondence is defined by the
maximum of the GMM posterior probability for a given data point.

Given the GMM centroid points and the data points generated by the GMM,
the GMM probability density function (PDF) is defined. In addition, the authors
in [9] also add a weighted uniform distribution to the mixture model allowing
it to account for noise and outliers. For all GMM components, equal isotropic
covariances o2 is used as well as equal membership properties. The GMM cen-
troid locations are re-parametrized using the parameter set 6, estimated using
maximum likelihood allowing the i.i.d data assumption to be made. Thus the
correspondence probability between two points can be defined as the posterior
probability of the GMM centroid. Expectation Maximization (EM) is used to
find 6 and o2 where as the expectation (E) step, the parameters § and o2 are
initially guessed and then the Bayes’ theorem is used to compute a posteriori
probability distributions of mixture components. The maximisation (M) step is
then used to find the new parameter values by minimizing the expectation of the
complete negative log-likelihood function with respect to the new parameters.
The E and M steps are processed alternately until convergence, generating the
posterior probabilities of the GMM components. Unlike ICP, in CPD, the GMM
centroids are forced to move coherently as a group to preserve the topological
structure of the point sets.

We examine the affine (74) and non-rigid (7y) registrations here. For 74,
optimization is unconstrained and defined as T (y,,; R, t,s) = By,, + t, where
Bp«p is an affine transformation matrix and tpy1 is the translation vector. For
7w, transformation is defined as the initial position plus a displacement function,
T(Y,v) = Y + v(Y), where v is the displacement function. In the method
for 7, the authors in [9] regularize the norm of the displacement function.
This approach is based on the motion coherence theory (MCT) [10] stating
that points close to one another have a tendency to move coherently, thus the
displacement function between points sets should be smooth. The regularization
term in [9] is equivalent to the MCT, implying that point based motion coherence
is imposed. This regularization is integral to CPD and its ability to register
point sets coherently, important for retinal vessel registration. Thus we use a
high regularization parameter for 7 to maintain vessel structure coherence.
A transformation matrix is then generated from the registered vessel points.
Currently only affine transformation is used as the clinical suitability of further
transformations affecting the structure of the retina by deformation is uncertain.

4 Registration Results

To evaluate registration performance, two sets of results are presented. In our
experiments, intra-vendor registration was carried out between pairs of OCT
scans acquired from 8 patients at different time points (inter-vendor registration
differs only in that the landmarks come from scans of distinct vendors). 7 pairs
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Fig. 3. (a) MHD & (b) MD between pairs of registered OCT scans comparing distances
prior to registration (horizontal axis) against distances post registration (vertical axis).

feature unique scans and the eighth pair was used as a control and featured
one unique scan twice. Thus a total of 15 unique 3D SD-OCT fovea-centred
diseased volumes were used for testing. Of the 15 scans, levels of pathology
ranged from low to high primarily due to the presence of cysts, exudates and
drusen. In addition, motion artefacts in the X direction are seen in P due to
patient motion, resulting in misaligned Bg.

Firstly, we used CPD to register between scan pairs in 3D using 7y and 74.
Registration performance was quantified by calculating the modified Hausdorff
[11] (MHD, Fig.3) and Mahalanobis distances (MD, Fig.3) between point sets
prior and post registration, where point set distance is expected to decrease
post registration as the retinal vessels become aligned. Prior to registration, a
mean MHD of 92.89 + 92.41 voxels was calculated for the vessel pairs. This was
reduced to 8.319 + 3.91 and 7.579 + 3.569 voxels for 74 and 7y respectively
after registration where . A mean MD of 8.192 + 6.999 prior to registration for
the vessel pairs was reduced to 2.259 4+ 0.078 and 2.249 + 0.109 for 7 and 74
respectively after registration. Thus registration reduced the mean MHD across
all scan pairs by 92% & 91% for 7y and 74 respectively and mean MD was
reduced by 72% & 73% for Ty and T4 respectively. Comparison with the state of
the art method proposed in [2] applied to the same test scans resulted in mean
MHD of 94.39 + 93.33 voxels and mean MD of 7.804 + 5.373 between registered
and target scans, showing our method to perform significantly better.

Our second experiment qualitatively assesses system performance to account
for the disjoint segments of the landmark retinal vessels between scan pairs. The
registration results were given to 3 expert graders who were asked to identify
well and poorly overlapping major bifurcations between the target and registered
vessel points. Across the graders, a mean of 136 + 7 and 4 £ 1 bifurcations
using 74 were well and poorly aligned respectively. Using 7, this became a
mean of 139 & 10 and 2 4 1 bifurcations. Thus 94% and 96% of bifurcations
correctly overlapped between target and registered vessel sets using 74 and 7y
respectively.

5 Conclusion

We have proposed a method of retinal OCT volume registration using CPD reg-
istration of segmented retinal vessel shadows as landmarks. We first showed that
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the retinal vessels could be used to accurately and reproducibly represent the
retinal OCT volume for both intra-patient acquisition and multi-vendor acquisi-
tion. By combining these segmented vessel shadows and modelling them as the
retinal vessels, based on their geometric parameters obtained from the respective
volume and layer information, CPD registration was applied to transform the
temporally acquired vessel point sets. Our experiments quantifying the MHD and
MD between target and registered point sets show the minimisation of the dis-
tances between original and target point sets after transformation, by up to 92%
using non-rigid transformation and 91% using affine transformation. Qualitative
analysis of the transformed point set bifurcations with their respective targets
by experienced graders shows a mean of 96% correctly overlapping bifurcations
when using non-rigid transformation. In addition, comparison against current
state of the art methods for retinal OCT volume registration show significantly
improved performance for pathological, multiple vendor scans.
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