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1 Abstract

Geometric changes of curvilinear structures in ophthalmologic images have been
widely considered as the early signs for the diagnosis of eye-related and systemic
diseases. For instance, retinal vascular tortuosity is an important biomarkers for
indicating retinopathy of prematurity [1], and the density of corneal nerve fibers
is used to predict type-II diabetes [2]. As such, detecting the curvilinear struc-
tures and analyzing the variation of their geometric properties in an automatic
way are important in the computer-aided diagnosis.

Many methods have been proposed for the extraction of the curvilinear struc-
tures in ophthalmologic images [3, 4]. In general, most of these methods focus on
picking up the elongated segments as many as possible, without considering the
connectivity of structures. In particular, these methods can be easily affected by
classical issues like contrast changes, non-uniform illumination and low signal
to noise ratio in the images. Thus, disconnected curvilinear segments may often
occur in the segmentation results. Moreover, many tracking based approaches
highly rely on a pre-determined skeleton from a binary segmentation, so they
will not be able to trace a complete curvilinear network based on an imperfect
skeleton map. In clinical analysis, interrupted curvilinear networks may lead to
unreliable quantitative measurements of biomarkers, e.g. incorrect statistics of
vessel tortuosity, fiber length or density. There is also a shortcoming of meth-
ods [5, 6] with insufficient quantitative evaluations for dealing with the gap filling
problem in the literature. Therefore, an automatic method for the reconnection
of gaps is essentially important for improving the accuracy in the assessment of
health biomarkers.

In this work, we propose an automatic method for solving the gap filling
problem in the skeleton of curvilinear structures. This method employs the com-
pletion process, i.e. mathematical modeling of the direction process [7] to achieve
line and contour propagation/completion. The completion process is inspired by
the geometry of the visual cortex [8], and it can be used to reconstruct inter-
rupted curves by considering their consistency. Different numerical approxima-
tions [9] have been used to model the completion process on the roto-translation
group SE(2) ≡ R2oS1, i.e. the coupled space of positions and orientations. Here
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we rely on our previous finite difference explicit implementation [9] to construct
the 3D completion kernel. To process curvilinear structures in R2oS1, the frame-
work of orientation scores [10] are exploited to lift 2D curvilinear structures into
the 3D coupled space, where the crossing elongated structures are disentangled
into different layers according to their local orientations.

The propagations and reconnection of interrupted curvilinear structures are
achieved by convolving the completion kernel with orientation scores via iterative
group convolutions. After each group convolution step, the curvilinear skeleton
map needs to be updated for the next iteration. To overcome the incorrect skele-
tonization of 2D thinning approach at junctions, a 3D segment-wise thinning
technique is proposed to process each binary segment separately after threshold-
ing the 3D convolved orientation scores. By taking the maximum responses over
all orientations per position in orientation scores, a 2D skeleton map with prop-
agated curvilinear structures is obtained. The broken structures are reconnected
after several iterations (1 to 3 in our experiments). Experiments are performed
on the manual annotations of curvilinear structures in four datasets with differ-
ent image modalities, i.e. retinal images and corneal nerve fiber images, where
artificial gaps with different sizes are created on segments and junctions. The
validation results show that the proposed method works robustly for curvilinear
skeleton reconnection.
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