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Abstract. Diabetic Macular Edema (DME) is a major cause of vision loss in 

diabetes. Its early detection and treatment is therefore a vital task in 

management of diabetic retinopathy. In this paper, we propose a new feature-

learning approach for grading the severity of DME using color retinal fundus 

images. An automated DME diagnosis system based on the proposed feature-

learning approach is developed to help early diagnosis of the disease and thus 

averts (or delays) its progression. It utilizes the convolutional neural networks 

(CNNs) to identify and extract features of DME automatically without any kind 

of user intervention. The developed prototype was trained and assessed by using 

an existing MESSIDOR dataset of 1200 images. The obtained preliminary 

results showed accuracy of (88.8 %), sensitivity (74.7%) and specificity (96.5 

%). These results compare favorably to state-of-the-art findings with the added 

benefit of an automatic feature-learning approach rather than a time-consuming 

handcrafted approach.  

1   Introduction 

Diabetic Macular Edema (DME) or Diabetic Maculopathy (DM) is a condition 

characterized by the appearance of exudates on close to the macula. Consequently, the 

central vision of the patient is affected. DME usually develops at any time during the 

progression of Diabetic Retinopathy (DR). DR is associated with high blood glucose 

levels that cause damage to the vessels supplying blood to the retina. According to the 

Early Treatment Diabetic Retinopathy Study (ETDRS), DME is characterized by the 

thickening of the macula, hard exudate (HE) and blot Hemorrhage (HA) [1].  

Clinically, the severity of DME is mainly divided into two classes: (i) non-clinically 

significant macular edema (non-CSME) and (ii) clinically significant macular edema 

(CSME). Non-CSME is a mild class of maculopathy in which the distance between 

the lesions and the center of the macula is greater than one optic disc diameter. The 

retinal thickening and hard exudate are considered the main clinical features for Non-

CSME. The CSME represents the severe form of maculopathy in which lesions (blot 

hemorrhage and exudate) occur within a distance of less than one optic disc diameter 

from the center of macula [2], [3].  

It is believed that the early detection and treatment of DME may improve the 

visual acuity. Different imaging techniques have been used for the diagnosis of DME 
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such as retinal thickness analyzer (RTA), color fundus photographs, fluorescein 

angiography (FA) and optical coherence tomography (OCT). Recently, many 

automated and computerized systems for DME grading have been introduced along 

with associated image processing techniques for exudate, fovea detection and 

segmentation using retinal fundus images [4] – [10]. In order to detect and grade the 

severity of DME, existing methods in the literature have relied on either detection of 

the location and segmentation of exudate and the macula [4] – [7] or the extraction of 

texture and image based features [8] – [10].  

In [6], Tariq et al. proposed a method based on extracting morphological features 

and the location of exudate after segmenting the exudate using a Gabor filter bank and 

mathematical morphology. Finally, the distance between the exudate and the center of 

the macula was calculated in order to grade the severity of DME in each image. 

Furthermore, Zaidi et al. [7] developed a grading method using Gabor filtering, 

mathematical morphology and Otsu thresholding with a Bayesian classifier to detect 

the location of exudate and positional constraints to grade the severity of DME. 

Moreover, Giancardo et al. [5] proposed an automated grading system based on 

exudate probability map and wavelet decomposition. The Kirsch edge operator and a 

region-growing algorithm were used to locate the hard exudate and the fovea region. 

In [8], the authors developed a method based on motion pattern analysis and the 

Radon transform to extract the features necessary to detect the presence of DME in 

the images. Baby et al. [9] used Gaussian data description (GDD) to extract features 

from the wavelet sub-bands that are obtained by a dual tree complex wavelet 

transform (DT-CWT). Another method based on higher order spectra features was 

also proposed by Mookiah et al. [10] to grade the severity of DME.  

Performance of the aforementioned grading systems, however, relies on the 

exudate segmentation, anatomical structure localization and feature extraction 

strategies. The detection of anatomical structures (i.e. fovea and macula) and exudate 

segmentation in these methods are challenging and time-consuming. Furthermore, the 

features extraction is highly dependent on the dataset under study to evaluate the 

proposed methodology. Moreover, finding and engineering a feature set that is 

appropriate for different datasets is still a challenge since features that are 

representative of or descriptive for one dataset are often not representative of or 

descriptive for other datasets.  

Automated feature learning algorithms depending on deep learning have recently 

emerged as a feasible approach and have proven to be effective in some computer 

vision applications such as ImageNet classification [11] and face recognition [12]. 

More recently, a primary step towards automatic deep learning method for location 

detection of important retinal landmarks, the fovea and optic disc (OD) in digital 

fundus retinal images was reported by Baidaa et al. [13]. However, its effectiveness in 

DME grading is not yet thoroughly explored in the literature. In this paper, we 

introduce a deep learning-based convolutional neural network (CNN) approach to 

address the problem of relying on handcrafted features as well as the time consumed 

in the segmentation of retinal landmarks such as the fovea and optic disc and lesions. 

The remainder of this paper is organized as follows. Section 2 provides an 

overview of the proposed system along with a comparison with traditional systems, 

Section 3 presents the methodology and describes the deep learning algorithm used in 
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this work, Section 4 presents and discusses the obtained results. Finally; the work is 

concluded in Section 5.  

2   System Overview  

In traditional automated grading systems [5] – [10], in order to grade DME, the 

contrast of images is enhanced as a pre-processing stage and then the blood vessels 

are removed using matched filtering or mathematical morphology. Further to this, the 

location of the macula is detected and exudate segmentation is applied. After that, 

different texture, morphological, and image-based features are extracted from the 

segmented exudates. In the last stage, the DME grading is calculated depending either 

on the distance of exudate from the macula or using machine-learning algorithms. 

Figure 1(a) shows a simplified diagram for traditional DME grading systems [3]. 

As the performance of the automated grading system is highly dependent on the 

extracted features, the performance of the existing methods may vary from one 

dataset to another because the extracted features are not always representative of 

different datasets. Also, these features are handcrafted which incurs a time cost and 

considerable effort. So, the need to adopt a generalized and automatic feature 

extraction method is the best solution to counter these issues. Furthermore, traditional 

approaches have relied on the position of exudates around and near the macula to 

grade the severity of DME. The extraction of exudates mainly depends on the 

efficiency of the segmentation algorithm while detection of the location of the macula 

and fovea highly depends on the accuracy of data mining and texture imaging 

techniques. Therefore, implementing a method of grading DME that is independent of 

the segmentation algorithms is a crucial task. 

 
 

                          (a) Traditional DME grading systems  

 
 

                          (b) The proposed DME grading system 

 
Fig. 1. Comparison between traditional and proposed DME-grading systems - the proposed 

system does not depend on any kind of segmentation or handcrafted features and sums up many 

stages of traditional system in only two automatic stages.   
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Figure 1(b) shows a diagram of the proposed DME grading system. In the feature 

extraction stage, the features are automatically learnt by convolutional neural network 

(CNN) and fed into a classifier for classification. The CNN consists of convolutional 

layers, max-pooling layers, dropout layers, fully connected layers and activation 

functions. The convolutional layer is made up of a sequence of filters which are used 

to perform a two dimensional (2D) convolution with the input image. The output of 

this layer is called the feature map [14]. The max-pooling layer is a subsampling layer 

where the feature map is down-sampled [15]. The inclusion of a dropout layer is a 

regularization technique that is essential for reducing overfitting [16]. The fully 

connected layer is the final layer in the CNN where each neuron is completely 

connected to the other neurons. The proposed system is therefore represents a 

promising solution to address the above-mentioned concerns of traditional systems 

since it does not depend on any kind of segmentation or handcrafted features. 

3   Materials and Methods 

The proposed feature learning and grading approach comprises three main stages: 

(i) pre-processing, (ii) network design and training, and (iii) an evaluation stage.  

These stages are explained as follows. An existing dataset (called MESSIDOR) [17] 

is used in this study for training and evaluation purposes because it is a fairly large 

dataset and it is labelled. It comprises 1200 images classified as either normal (no 

DME), Non-CSME or CSME. These images were captured by using a color 3CCD 

camera on a Topcon TRC NW6 with 45-degree field of view (FOV) with resolutions 

of either (1440×960), (2240×1488) or (2304×1536) pixels.  

In order to implement the system, a NVIDIA GTX TITAN X 12GB GPU card 

with 3072 CUDA parallel-processing cores is used. This GPU has more than the 

estimated 4GB required to load all training images and process them at one time. This 

GPU supports the CUDA Deep Neural Network library (cuDNN) for GPU learning. 

The Lasagne Python deep learning [18] and Theano [19] libraries were used to 

implement and train the networks.  

3.1   Pre-processing 

In this stage, the smallest rectangular region containing the entire FOV is 

automatically determined and used to crop each image. After that, the cropped images 

are resized into three different sizes 128×128, 256×256 and 512×512 pixels to obtain 

acceleration while keeping the images sufficiently large to identify features such as 

exudates. Finally, the red, green and blue (RGB) channels in the image are scaled to 

have zero mean and unit variance. 

 

3.2   Network Design and Training 

 

The structure of the proposed CNN is shown in Figure 2. Three CNN architectures 

are implemented and trained with one of three different image sizes 128×128, 

256×256 and 512×512 pixels. The main objective of training three different networks 
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is to obtain fast computation time. We use the weights of the networks trained on the 

smaller images to initialise the networks trained on the larger images. This helps to 

speed up the process of training without resorting to resizing images below a level 

where key features may not be detectable for the final classification. The structure of 

the first network includes the layers in the first block along with the fully connected 

layers (shown in Figure 2). This network is trained from scratch using images with 

size of 128x128 pixel images. The architecture of the second network comprises the 

first and second blocks along with the fully connected layers. The weights are 

initialized from the first network and trained by using images with 256x256 pixels. 

Finally, the third network comprises the first, second and third block along with the 

fully connected layers and are trained on images with 512x512 pixels with the 

weights being initialized from the second network. The final network architecture 

comprises 13 convolutional layers with filter of sizes 5×5 and 3×3. Each 

convolutional layer is followed by a Leaky (0.01) rectified linear unit (ReLU) step. 

Four max-pooling layers with window size of 3×3, 2 fully connected layers with 1024 

neurons each and two dropout layers between the fully connected layers are used.        

The dataset is randomly divided into 70% for training and validation (10% of this 

data is used for validation), and the remaining 30% for testing. To increase the size of 

data artificially in order to decrease possible overfitting problem, the data is 

augmented. In every epoch (single pass of all training data through the network) 

during training, each image is randomly augmented with: random rotation between 0-

360 degrees, random horizontal and vertical flipping, random translations of between 

-40 and 40 pixels, random zooming and random shearing. Furthermore, to counter the 

impact of unevenly distributed data, oversampling is applied on the imbalanced 

training set in order to get more uniform distribution of classes and increase detection 

performance on the rare classes.  

 
 

Fig. 2. Architecture of the proposed convolutional neural network  
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To train the networks, stochastic gradient descent SGD with the Nesterov 

momentum optimization algorithm is used with adaptive learning rate (start=0.003, 

stop=0.00003) and momentum parameter 0.9. The orthogonal weight initialization 

method proposed in [20] is considered to initialize the weights of filters in the first 

implemented network. The first and second networks are trained with 200 epochs 

while the third network is trained with 250 epochs. The loss function used for 

optimization is the mean squared error (MSE) with a thresholding value in order to 

predict and obtain the three classes (Normal (0), non-CSME (1), CSME (2)). 

Moreover, L2 regularization with weight decay factor 0.005 is used in the 

convolutional layers and a dropout rate of 0.5 is used between fully connected layers. 

These are implemented as regularization approaches to decrease overfitting in the 

network during training.           

 

3.3   Evaluation 

 

Once the network is trained, the test images are used to evaluate the performance 

of the implemented network by predicting the classification of previously unseen 

data. The performance of the implemented system are evaluated using three 

measurements; sensitivity, specificity and accuracy. In this study, sensitivity is 

defined as the percentage of images that are correctly classified as having DME out of 

the true total number of images with DME. Specificity is defined as the percentage of 

images that are correctly classified as not having DME out of the true total number of 

images without DME. Accuracy is the percentage of images that classified correctly. 

4   Results and Discussion 

The proposed system was evaluated on 30% of 1200 images (357 images) where 

the trained CNN achieved 88.8%, 74.7% and 96.5% in terms of accuracy, sensitivity 

and specificity, respectively. From the confusion matrix in Figure 3 that gives the 

prediction ratio per class, we notice that the prediction ratios for each of the classes 

are very encouraging. An important consideration is the imbalanced distribution of 

the images in the dataset, 154 images (13%) are grade 2, 75 images (6%) are grade 1 

while 971 images (81%) are grade 0. Consequently, the non-CSME and CSME 

classes constitute only 19% of the data while the majority of the images are class 0 

(normal). This imbalanced distribution may cause the CNN to overfit to the majority 

classes and result in the differences observed in prediction ratios between classes. 

We have used an oversampling strategy in order to balance the distribution in the 

case of rare or less common classes. This has led to improved results for prediction 

but may be improved further. Our proposed system demonstrates comparable results 

with other methods in the literature; we obtain higher accuracy than [21] who 

achieved 85.2% and similar accuracy to machine learning methods such as [7] and 

[10] which had 94.1% and 95.56% respectively. Although our accuracy is lower than 

these two models, we achieve this without the need for prior feature extraction, 

exudate and macula segmentation or the removal of retinal blood vessels.  
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Fig. 3. Prediction ratio per class in confusion matrix, (0) refers to normal images, (1) non-

CSME and (2) CSME. It shows good prediction results despite the rarity of classes 1 and 2. 

5   Conclusions 

An automated method for grading the severity of DME has been presented. We 

have shown that the proposed system based on CNN has convincing ability for 

automated feature extraction from retinal fundus images and grading of DME. This 

technique will be valuable for future automated DR grading system. This promising 

solution addresses the main concerns of traditional systems where the segmentation 

and handcrafted features are considered key requirements. 

In future, we plan to improve the performance of the proposed CNN approach by 

considering better techniques for the training network parameters, implementing 

different loss functions, and considering further enhancements of the network 

architecture. We also attempt to improve the performance by addressing the data 

limitations in various ways, such as optimizing the method to allow for the training of 

higher-resolution images and increasing the quality of images using enhancement 

algorithms. We also aim to develop an improved solution for addressing data 

imbalance issues over that provided by our current oversampling strategy. 
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