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Abstract: Qualitative evaluation of stereo retinal fundus images by experts is 
a widely accepted method for optic nerve head evaluation (ONH) in 
glaucoma. The quantitative evaluation using stereo involves depth estimation 
of the ONH and thresholding of depth to extract optic cup. In this paper, we 
attempt the reverse, by estimating the disc depth using supervised and 
unsupervised techniques on a single optic disc image. Our depth estimation 
approach is evaluated on the INSPIRE-stereo dataset by using single images 
from the stereo pairs, and is compared with the OCT based depth ground 
truths. We extract spatial and intensity features from the depth maps, and 
perform classification of images into glaucomatous and normal. Our 
approach is evaluated on a dataset of 100 images and achieves an AUC of 
0.888 with a sensitivity of 83% at specificity 83%. Experiments indicate that 
our approach can reliably estimate depth, and provide valuable information 
for glaucoma detection and for monitoring its progression.  
 

 

1 Introduction 

Optic nerve head (ONH) assessment for glaucoma detection is commonly done 
by observing stereo optic disc images for structural abnormalities. Stereoscopic 
photographs of the optic nerve allow a perception of the cup depth, which is an 
important cue for glaucoma. A few works in literature have quantified the 
changes in the optic nerve by computing the ONH depth map using stereo 
matching methods [1] [2]. Cup-to-disc ratio (CDR) is an important parameter 
determined from the optic disc and optic cup and commonly used in identifying 
elongation of optic cup and loss of neuro-retinal rim. CDR estimation by 
thresholding depth maps calculated from stereo images has been implemented 
in [3]. However, due to the huge cost and high level of expertise required for 
stereoscopic evaluation, the use of stereo imaging is limited in glaucoma 
screening.  
In [4], depth estimation and cup extraction is done on a single image using a 
coupled sparse dictionary based supervised method. CDR estimation has been 
widely performed using monocular retinal fundus images. Various methods such 
as deformable model based [5], superpixel based [6] and supervised classifier 
based methods [7] have been implemented on monocular images to segment the 
optic cup and compute CDR. Very few works have directly used CDR for 
classification of normal and glaucomatous discs [8]. Moreover the use of CDR as 
a discriminatory measure for glaucoma prediction is limited due to the 
considerable overlap between glaucomatous and normal cases [9]. 

X. Chen, M. K. Garvin, J. Liu, E. Trucco, Y. Xu (Eds.): OMIA 2016, Held in Conjunction
with MICCAI 2016, Athens, Greece, Iowa Research Online, pp. 9–16, 2016. Available
from: http://ir.uiowa.edu/omia/2016_Proceedings/2016/

http://ir.uiowa.edu/omia/2016_Proceedings/2016/


The idea of our approach is to get an estimate of the depth of the optic disc, by 
analysing the intensity variations in the ONH region, and to extract 
discriminative features for glaucoma prediction. Optic disc cupping is a common 
risk factor for glaucoma, and its spatial variation is an important indicator to 
identify the extent of glaucoma. Our approach is based on the assumption that 
the actual depth map of the disc is related to the intensity variations inside the 
disc. We perform superpixel-based supervised soft segmentation of optic cup 
from the retinal fundus image [10], and build a depth map of the optic disc ROI. 
We also implement a fast marching technique to estimate the unsupervised 
depth map, and combine the two to compute our final depth estimate of the optic 
disc. This is used to compute spatial features and intensity features that 
characterize the variations in the depth, for the detection of glaucoma.  

 

2 Methodology 

Our proposed approach consists of four main steps: Supervised depth 
estimation, unsupervised depth estimation and integration, feature extraction, 
and glaucoma prediction. The steps of our approach are illustrated in figure 1. 

2.1 Supervised Depth Estimation 

 
Cup Segmentation: We implement the superpixel-based cup segmentation 
method presented in our previous work [9]. This method is similar to the one in 
[6]. First, we generate superpixels on the optic disc ROI I using simple linear 
iterative clustering (SLIC).  The optic disc boundary is assumed to be given, and 
we perform feature extraction and classifier training on the superpixels within 
the optic disc. From each superpixel within the optic disc, histogram based 
features, center-surround difference based features, and a distance feature is 
extracted. These superpixel features are used to train a Classifier C1 for cup-rim 
classification. C1 outputs a cup confidence map M1, assigning a cup probability 
score for each superpixel in the disc. 
Depth Estimation from Cup Segmentation Outputs: We compute our depth 
estimate D1, by first taking a complement of M1 and then smoothing it. We invert 
M1

 so that we have low intensity values around the disc center indicating a 
deeper region, and higher intensity values as we move away. We consider M1

’ to 
be the initial estimate of the depth map. Due to the segmentation at the 
superpixel level, M1

’ is not smoothly varying. We perform smoothing on M1
’ by 

first extracting the locations of centroids of the generated superpixels and their 
corresponding cup confidence values. We use this to perform cubic interpolation 
to get the interpolated cup confidence values on the rest of the pixels.  This gives 
us a reasonably smooth map D1. Further smoothing is performed by using a large 
sized moving average filter to get the final smooth depth map Df using the cup 
confidence map. Figure 2 shows the intermediate outputs, the final depth map 
and the OCT depth ground truth for an input image ROI. 
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Figure 1: Depth based approach framework: intensity-based depth estimation, 

followed by feature extraction and glaucoma prediction 

 

2.2       Unsupervised Depth Estimation 

We perform an unsupervised depth estimation using fast marching to capture 

the intensity variations from the boundary of the optic disc to the disc center, 

and characterize the depth in terms of the geodesic distance. 

 
Cost Image Generation: We generate an appropriate cost image for the fast 
march algorithm that can describe the shape of cupping. We need a cost image 
that enhances the cup-rim contrast. In the RGB colorspace, the green channel 
image is known to be suitable to extract the cup. Here along with the green 
channel image IG we also compute the luminance channel image IL in the La*b* 
colorspace. Our final cost image W is the pixel-wise product of IG and IL (refer 
figure 3(b)).  
Depth Estimation using Fast March: The depth map of the optic nerve head 

using W is estimated by means of the fast marching method. For every image I, 

we have COD as the optic disc center, and p1 , p2 ... pK as K points lying on a circle, 

with diameter a little greater than that of the optic disc (Refer figure 3(c)). For 

every point pk in the image W, we perform the following steps: 
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Figure 2: Depth estimation using cup segmentation: (a) original optic disc ROI, 
(b) Cup Confidence map M1 (c) M1’ , (d) D1, after cubic spline interpolation, (e) 
Final depth map Df , (f) the depth map ground truth Dgt 
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i) We implement fast marching with pk as the start point, and COD as the end 

point. The output is a geodesic map Gk. 

ii) From Gk , we extract N contours. Each contour Cn consists of a set of pixel 

locations {Xn} , and the corresponding contour height {Hn}. 

iii) We also compute the line Lk joining pk and COD. 

iv) For each contour Cn we extract the points of intersection between Cn and Lk, 

and the corresponding contour height (refer figure 3(d)). 

Totally, for all the K start points, we get a set of V (x,y) pixel intersection 

locations r1 , r2 ... rv and corresponding contour heights h1 , h2 ... hv . Using these 

pixel locations and height values, we perform a cubic spline interpolation to get 

the interpolated height values at the rest of the pixel locations. This gives us D1, a 

crude complement of the depth map (refer figure 3(f)). We perform further 

processing by inverting it and applying median filter, to get the final 

unsupervised depth map Df (refer figure 3(f)). 

Our final depth estimate Dt is a linear combination of the supervised depth map 
Dc and the unsupervised depth map Df. 
 
 
 
 
 
 
 
 
 
 
 
 

2.3       Feature extraction 

The extent of cupping can be visualized from the depth map Dt computed using 
supervised and unsupervised techniques. From the depth map, we extract 
spatial and intensity features that describe the local dissimilarities on the 
surface. All the depth maps, whether normal or not, have approximately the 
same structure, therefore it is necessary to compute features that extract spatial 
information and capture local differences. Many works in literature emphasize 

Figure 3: Unsupervised depth map estimation: (a) Original optic disc ROI; (b) the 
cost image W; (c) W showing K start points in orange, and the end point COD in 
blue, for fast marching; (d) W showing pk and COD in magenta,  the contours of a 
pk overlayed in red, , the line Lk joining pk and COD in green, and the points of 
intersection  in blue; (e) a zoomed version of the points of intersection in (d); (f) 
Geodesic map D2 after cubic spline interpolation; (g) Final depth map Df 
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the importance of considering disc size in detection of glaucoma [9]. So, along 
with depth map features, we also extract shape features from the optic disc. 
Spatial features: We utilize the polar map template, introduced in [10] to 
extract features that capture the spatial information from the depth maps. We 
construct the template here, by fixing the number of concentric shells around the 
optic disc center to be 4, and the number of sectors in each shell as 8. We 
calculate two features-mean depth and mean gradient of depth- within each of 
the 32 bins, to get a total of 64 spatial features.  
Intensity features: We threshold the depth map using eight values between 0 
and 1, and compute the number of thresholded pixels, and the orientation of the 
extracted binary map. This gives us 16 intensity features. 
Global features: We also compute three global features- major axis length, 
minor axis length, and orientation- of the optic disc, and thresholded optic cup 
from the depth map. We set the threshold as 0.5 heuristically, to approximately 
extract the optic cup from the depth map. This gives us 6 global features. 
Totally, we extract 86 features (FD) from the Dt   for glaucoma prediction. 

2.4       Glaucoma Prediction 

From depth map Dt , we extract 86 features to train a random forest classifier C2. 
C2 is trained using these features to classify images as normal or glaucomatous. 
The output of C2 is a probability value PG which indicates the risk of presence of 
glaucoma. 
 

3 Experimental results and discussion 

We evaluate our depth estimation approach on 30 stereo images (T1) from 
INSPIRE dataset [1]. We consider only one image from the stereo pair and 
evaluate our approach with respect to the available depth reference based on 
spectral domain Optical Coherence Tomography (OCT). From the OCT volume of 
the ONH, surfaces of the retinal layer are detected by 3D segmentation. Depth is 
recorded as intensities and registered manually with the reference stereo images 

to create depth ground truth for evaluation. Our glaucoma prediction approach is 
evaluated on a set of 100 images (T2) created using publicly available RIM-ONE 
R1, RIM-ONE R2 and RIM-ONE R3 datasets [11]. T2 consists of 53 normal images, 
and 47 glaucoma and glaucoma suspicious images. We manually crop images in 
T1 and T2 to retain optic disc ROI. We perform three main experiments: i) 
comparison of our depth estimation approach with other state-of-art methods 
on T1, ii) evaluation of glaucoma prediction performance of our approach on T2, 
and iii) evaluation of class separation of the glaucoma probability outputs for 
glaucoma and normal classes.  
 
3.1       Depth Estimation 
Depth Estimation from Cup Segmentation Output: We use the classifier 
model generated by C1 in our previous work [9] to perform cup segmentation on 
the images in T1 and carry out further smoothing to compute Dc.  
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Depth Estimation from Fast March: We perform pre-processing on T1 to get 
the cost image W. On this, we implement our fast marching algorithm. We set the 
number of start points K to be 20, chosen at an interval of      from each other 
on the circle boundary with diameter 1.2 times the vertical diameter of the optic 
disc (refer figure 3 (c)). We set the number of contours N from each point as 15. 
Setting these values to the parameters, we compute Df. 
Using Dc and Df, we also compute our final depth map Dt by taking the linear 
combination of the two, with equal weights of 0.5 for both. Figure 5 shows the 
ground truth Dgt , the computed depth maps Dc , Df  and Dt , and the surface 
visualization, for two images from the INSPIRE-stereo dataset. 
 
Performance Evaluation: To evaluate the performance of our methods, we 
compute the parameters - Correlation, Root mean square error, and the standard 
deviation- between the estimated depth maps and ground truth, and compare it 
with state of art methods. Table 1 compares the values of the evaluation metrics 
for different depth estimation methods. 
 
3.2. Evaluation of Glaucoma Prediction 
 
 We perform feature extraction on our depth estimate Dt to compute FD. FD is use 
to train to a random forest classifier C2 to output the glaucoma probability values 
PG. We perform leave-one-out validation on 86 features extracted from the 100 
images, to evaluate the performance of C2. We set the number of trees as 1000, 

and the number of randomly selected variables as 9 (  ). Figure 4 shows the 
glaucoma detection performance for leave-one-out validation on C2. Our depth-
based approach using Dt achieves a maximum AUC of 0.888. We compare this 
performance with the best performing polar map based approach, and the CDR-
based approach [9]. We observe that our depth based approach performs better 
than the other two, achieving a sensitivity of 83% at specificity 83%. 
 
 
 

 
Figure 3: (a) Original image; (b) OCT Depth map Dgt , (c) Depth from cup confidence 
map, Dc , (d) Depth from fast marching, Df , (e) Combined depth map Dt , (f) 
Visualized surface using Dgt ,(g) Visualized surface using Dgt 
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Table 1: Comparison of performance of various depth estimation methods 
Method Evaluated parameters 

Correlation RMSE Std Dev. 

Multi-scale stereo matching 

[1] 
- 0.1592 0.0879 

Coupled Sparse dictionary 

based (monocular) [4] 

0.8 - - 

Proposed supervised (Dc) 
 

0.7727 0.1825 0.1302 

Proposed unsupervised (Df) 0.7852 0.1488 0.1393 

Proposed Combined (Dt) 0.8225 0.1532 0.1206 

 
3.3. Evaluation of Class Separation 

 We evaluate the glaucoma probability output PG by measuring the class 
separation of PG. For this, we compute a distance metric, Bhattacharya distance 
ρD which measures how good a parameter is at discriminating between two or 
more classes. A higher value of ρD indicates better class separation. Here, we 
compute ρD to measure the glaucoma-normal separation of PG. Figure 5(b) 
shows the normalized histograms of PG for glaucoma and normal classes. The 
Bhattacharya distance ρD is calculated to be 0.6141, which is comparable with 
that for the CDR-based approach and polar map based approach. This shows 
glaucoma probability outputted by C2 using features extracted from Dt has high 
class discrimination and can be a dependable indicator of the presence of 
glaucoma. 
  
 

  
             (a)           (b) 

Figure 5: (a) Comparison of ROC curves of proposed approach (in black), 
CDR-based approach (in red) and polar map approach (in blue); (b) 
normalized histograms of PG for normal (blue) and glaucoma (red) classes; 
Bhattacharya distance ρD = 0.6141. 
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4 Conclusion 

In this paper, we implement a depth-based approach for glaucoma detection. We 
perform supervised and unsupervised techniques on monocular fundus images 
to compute a depth map Dt . From Dt , we compute spatial features, intensity 
features and global features, and train a classifier C2 to output a glaucoma 
probability value PG. We evaluate the performance of our depth estimation, 
glaucoma prediction and the class separation of the glaucoma probability output. 
The glaucoma-normal classification using our approach achieves an AUC of 
0.888, with sensitivity 83% at specificity 83%. Experiments indicate that our 
approach can be used to reliably estimate depth from a single image, and extract 
features that capture local dissimilarities in the depth. These features that 
characterize the depth are useful in predicting the glaucoma risk with 
reasonable class separation. Future work aims to automate ROI extraction, and 
apply this method on both images in the stereo pair to analyse the results. From 
the depth maps, more informative geometric features can be extracted to 
monitor glaucoma progression, and also identify the stages of glaucoma. 
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