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Abstract. Retinopathy of prematurity (ROP) is an eye disorder pri-
marily affecting premature neonates. Specialists use a number of neona-
tal retinal images acquired by a wide field of view camera for diagnosis
and the subsequent follow up. However, the premature infants’ retinal
images are generally of lower visibility compared to adult retinal im-
ages, affecting the quality of diagnosis. We study some image dehazing
methods from general outdoor scenes and propose an image restoration
scheme for neonatal retinal images, based on the physical model of light
propagation in a medium. The results from our restoration algorithm is
useful for analysis by human experts as well as computer aided diagnosis
and specifically we show that our method enhances vessel segmentation
significantly compared to traditional methods like adaptive histogram
equalization.
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1 Introduction

Worldwide, increase in neonatal survival rates has led to an increase in risk
of Retinopathy of prematurity (ROP), manifested from abnormal vascular de-
velopment in the eyes of premature babies. ROP could become aggressive with
neovascularization and potentially progress to retinal detachment and blindness.
Guidelines recommend weekly screening of at-risk neonates using a wide field of
view camera to capture and examine retinal images [1] and to detect and stage
the progression of the disease, and plan interventions. Challenges in imaging of
infant retinas result in lower image quality and information content (Fig. 1) as
compared to retinal imaging in adults. Limited dilation, heavy fundus pigmen-
tation, corneal and vitreous haze are some of the reasons attributed to the poor
image quality which can be addressed using image restoration techniques.

Single image based dehazing has been proposed for restoring outdoor hazy
images [4–6] and underwater images [7, 8], however there has not been much in
reported literature that address restoration of neonatal retinal images.

The model commonly used for dehazing is based on the Koschmieder model
[3] and is given by:

I(x)c = t(x)J(x)c + (1 − t(x))Ac (1)
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Fig. 1: Figure showing the difference between (a) adult and (b) infant retina and (c)
output of our restoration method on (b) and (d), (e), (f) are the outputs of vessel
segmentation method of [2], from which it can be clearly seen that our method results
in improved segmentation of neonatal retinal images.

where x is a pixel coordinate, c represents RGB color channel, I(x) is the ob-
served hazy image, J(x) is the original scene radiance, A is the airlight vector,
also referred to as ambient light, and t(x) is the transmission map which follows
the Beer-Lambert’s law, and is given by:

t(x) = exp(−µd(x)) (2)

where µ is the scattering coefficient of the medium and d(x) represents the depth.
The parameters that need to be estimated are A and t, given the single observed
image I, for computing J (dehazed image). To solve for J from single equation,
additional priors need to be imposed. One of the solutions [5] is the use of a dark-
channel prior to obtain an initial estimate of transmission t(x) and later refine it
using soft matting technique. A somewhat similar but faster method for dehazing
is proposed in [6] where ‘veil’ ((1 − t(x))A) is inferred instead of transmission,
and refined using median of median filtering before inverting equation (1) to
obtain J(x).

The above model has been applied only for either natural daytime scenes
or underwater images. Such models have not yet been studied for restoration
of images in medical domain, specifically retinal imaging. Therefore, we wish
to study the effectiveness of the model in neonatal retinal images.The main
contributions of this work are-
1. proposing an optical model for ROP imaging similar to the cases of under-

water imaging and imaging through fog or haze,
2. providing quantitative insights on viewing the neonatal retinal imaging as

imaging through turbid media by comparing with adult retinal imaging.
3. proposing an image restoration technique based on modified version of dark

channel prior and experimentally showing the improvement in segmentation
after restoration.

2 Method

The model described in the previous section is applicable for natural scenes in
the presence of atmospheric scattering like haze or fog. Such images generally
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Fig. 2: Flowchart of the method

have far objects, nearly planar objects, ambient light source illuminating in ar-
bitrary orientation with respect to camera pose. Some of the observations that
differentiate the case of retinal imaging from the above are i)since the medium
in the eye is mostly composed of vitreous humor, the scattering effects can be
assumed to be uniform throughout the eye and ii) since the camera uses artificial
illumination, the interaction of light among the scatterers causes some amount
of scattered light from foreground and background to be re-scattered towards
the camera, similar to airlight or ambient light. With the aforementioned points
in mind, the captured image is written as:

I(x)c = I(x)cD + I(x)cBS (3)

where I(x)cD represent the direct component and I(x)cBS represents the backscat-
tering component. The direct component can be further decomposed as:

I(x)cD = t(x)LcJ(x)c (4)

where J(x) represents the reflectance and L represents the luminance and t(x)
represents the transmission map. Also the backscattering component can be
decomposed as:

I(x)cBS = (1 − t(x))Ac (5)

where Ac represents the ambient light. Thus, it can be seen that the original scene
is degraded by two components- the multiplicative component i.e transmission
map which causes attenuation and the additive component i.e the backscattering
component which produces a veiling effect resulting in further degradation. In
this case, it can be noted that there is only one light source and all the regions
in the retina are illuminated by the same light source. Moreover, considering low
variation in the depth and the fact that there is only one source of illumination,
we can consider that the line of sight and the retinal surface are all illuminated
by the same source and thus ambient light in the backscattering component is
same as the source for illumination and have L = A, and therefore the final
equation for the modified model becomes:

I(x)c = t(x)AcJ(x)c + (1 − t(x))Ac (6)

The equation (6) has unknowns in t(x), A and J(x). For getting the dehazed
image, we need to have good estimates of t(x) and A. Based on the observation
that haze-free outdoor images have very low intensities in a square patch in at
least one color channel, He et. al [5] introduce a novel prior called dark channel
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prior, given mathematically by

Jdark(x) = min
cε(r,g,b)

(min
Ω(x)

(J(x)c) (7)

where Jdark is the dark channel of the image J and Ω(x) is a local patch centered
around x. The authors collect a large number of images from the Internet and
from the histogram of dark channel of the images, they show that about 75
percent of the pixels have zero values, and the intensity of 90 percent of the
pixels is below 25. They make an observation that for an outdoor haze free
image, intensity of J is low and Jdark tends to zero, except for the sky regions.
A hazy image is brighter than its haze-free version due to additive airlight.
Assuming A is given, the authors use the concept of dark channel prior to derive

the initial estimate of
∼
t (x). Formally, the initial transmission estimate is given

by:
∼
t(x) = 1 − min

cε(r,g,b)
(min
Ω(x)

(
I(x)c

Ac
)) (8)

This coarse estimate is later refined using spectral matting techniques. The
airlight A is also estimated from the dark channel by first picking the top 0.1
percent of brightest pixels in the dark channel and among these pixels selecting
the pixel with highest intensity in I as the airlight, the idea being that the
brightest pixels in the dark channel are affected most by airlight.

We propose a similar approach to get the transmission estimate but with
some important modifications. In outdoor dehazing models as well as our model,
we only consider the effects of scattering. It is known that scattering and ab-
sorption are different phenomena. The former depends only on the scene depth
whereas the latter is a function of both scene depth and wavelength. In the case
of retinal imaging, the green light is mostly absorbed by the vessels and only
partially reflected. Therefore, we consider the green channel to be absorptive and
hence in our model we consider only the red and blue channels for calculating
the dark channel.

Jdark(x) = min
cε(r,b)

(min
Ω(x)

(J(x)c) (9)

Before proceeding further we would like to test the validity of this dark channel
prior in retinal imaging. For this, we first compute the dark channels of adult
retinal images from STARE database and neonatal retinal images from a local
hospital. We plot the histogram of average intensities of dark channels of all the
images, histogram of intensities of all the pixels in dark channel and correspond-
ing CDF of all 397 images from STARE (top row of Fig. 2) and 325 images
from commercially available hand-held neonatal imaging device (bottom row of
Fig. 2). The histograms indicate that dark channels of infant retinal images are
overall brighter (80% of pixels have intensity values higher than 50) than those
of adult retinal images (showing 90% of pixels have intensities less than 50).
This shift in the intensities of neonatal retinal images is attributed to ‘ambient
light’ (due to turbid medium) and therefore validates the use of dark channel
prior in neonatal retinal imaging, with the dark channel of adult retinal images
as reference. This observation further strengthens our initial claim of viewing
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Fig. 3: First and second rows correspond to adult (total 397 images) and neonatal
(total 325 images) retinal images respectively. (a) and (d) show average intensity of
dark channels of all images, (b) and (e) show histograms of all pixels of dark channels
of all images, (c) and (f) show corresponding cdf. The shifts in the dark channels in
the second row can be attributed to scattered ambient light because of turbid medium

the restoration problem as imaging through a turbid media. Thus in our model
the initial transmission estimate is calculated as

∼
t(x) = 1 − min

cε(r,b)
(min
Ω(x)

(
I(x)c

Ac
)) (10)

This is a coarse estimate and hence needs to be refined. Instead of matting which
is of high computational complexity, we use guided filter [9] which is an edge-
aware operator to refine the transmission map t(x). With coarse transmission
map as input and another image as guide, local linear model of guided filter
assumes that the filter output to be a linear transform of guidance image in a
local window and minimizes a cost function so as to capture the smaller details
from guide image while globally maintaining the impression of the input (coarse
transmission map). We intend to give an image which provides the knowledge
of vasculature as a guide image. The guide image can be given in two ways-
i)contrast enhanced version of green channel which contains most vasculature
information or ii)background extracted statistically from Mahalanobis distance
criteria [10]. Mathematically, a given pixel can be said to be in background if
the distance

d =

∣∣∣∣
I(x) − µ̂N

σ̂N

∣∣∣∣ (11)

is lower than a threshold. Here µ̂N and σ̂N are sample mean and sample variance
of the input image I(x) respectively. Using this criteria we can separate out
the background which contains high vascular information. Example images are
shown in Fig. 3. The ambient light is estimated as described previously. Finally,
the restored image is given by

J(x)c =
I(x)c +Act(x) −Ac

t(x)Ac
(12)
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Fig. 4: Example guide images generated from method [10]

Fig. 5: Dehazing results of various methods for Central View, Stage 1 ROP in the first
row and Temporal View, Stage 2 ROP in the third row. Second and fourth rows show
the output of vessel segmentation method [2] for different methods.

3 Experiments

The effectiveness of the proposed approach is tested using images obtained from
a clinical setting. Images were obtained from multiple patients and the ROP
disease was categorized to one of the four stages. For each stage, we selected
one central and one temporal view of the retinal images randomly from different
patients and experimented on different methods. The temporal viewed images
were so chosen such that the optic disk was completely absent. We tested our
methods along with
1. CLAHE: Contrast limited Adaptive Histogram Equalization applied on the

V channel of HSV after performing the conversion from RGB to HSV.
2. DCP: Dark Channel Prior based dehazing method of He et. al [5]
3. FVR: Fast Visibility Restoration method of Hauterie et. al in [6]
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Table 1: Rate e for Central Views (C
V) and Temporal Views (T V) Neona-
tal Retinal Images of different stages

Stage CLAHE DCP FVR Ours

C V
1 0.9044 0.9422 0.9718 0.9737
2 0.9107 0.9308 0.9419 0.9380
3 0.8330 0.8587 0.8851 0.8849
4 0.8048 0.8331 0.9050 0.9280

T V
1 0.9566 0.9793 0.9735 0.9767
2 0.8976 0.9225 0.9225 0.9291
3 0.8018 0.8057 0.8318 0.8488
4 0.9097 0.8927 0.9132 0.9220

Table 2: Ratio r for Central Views (C
V) and Temporal Views (T V) Neona-
tal Retinal Images of different stages

Stage CLAHE DCP FVR Ours

C V
1 2.1082 2.3695 2.9664 3.1842
2 2.6038 2.7029 2.8586 2.7952
3 1.4956 1.5035 1.6276 1.6353
4 1.6193 1.8176 2.1856 2.3881

T V
1 2.0257 2.7771 2.4031 2.7363
2 1.9566 2.2317 2.1489 2.2628
3 1.7836 1.9869 1.9401 2.1688
4 2.0180 1.9386 2.2196 2.3394

To analyze the outputs of different methods qualitatively, we display the
results of two particularly challenging neonatal retinal images among the ones
used in our experiment. The first row of Fig. 5 shows the central view of stage
1 ROP image and third row of Fig. 5 shows the temporal view of stage 2 ROP
image. It can be seen that the input images are very hazy which makes it dif-
ficult for humans and computer systems to do the necessary analysis. CLAHE
improves the visibility slightly but much improved results can be obtained from
the dehazing techniques with the proposed method offering the most visibility.
But in stage 2 ROP case, DCP [5] and our method gives coloring artifact and
Visibility Restoration [6] method maintains the color of the input image and is
thus more visually pleasing because of its additional step of local white balance
processing. The second rows of both the figures show the output of vessel seg-
mentation algorithm [2] for the corresponding methods. Again it can be seen
that dehazing based methods perform better than CLAHE and makes vessel
segmentation using conventional methods perform much better.

For quantitative analysis, we use two of the metrics used in [6]. We compare
the input image and restored image after converting them into gray level. We find
the i) the rate e of newly visible edges after restoration calculated based edges
in the input image and restored image and ii) the mean ratio r of the gradient
norms of edges before and after restoration. Table. 1 shows the values of rate e
obtained for various restoration methods. Table. 2 shows the values of mean r
and seems to be a better metric for comparison since it gives average increase
of contrast on the visible edges. it can be seen that predominantly our method
gives the highest values of mean r . Based on the table, we can order ours, FVR
[6], DCP [5] and CLAHE in the decreasing order of contrast enhancement of
edges. This makes our method respond well to vessel segmentation algorithms.

The dehazing method of restoration has an added advantage that apart from
enhancement of the image, it also gives depth map, which can be calculated with
the help of equation (2). This depth map proves to be very useful in the higher
stages of ROP and also to monitor after treatment since it helps in visualizing
the retinal surface in 3D as shown in Fig. 6
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Fig. 6: Retinal 3D surface reconstruction from depth map for (left) ROP in stage 4 and
(right) ROP treated in stage 3.

4 Conclusion

In this paper, we propose a novel method for the restoration of neonatal retinal
images. We compare effectiveness of dehazing techniques in the image enhance-
ment. The results show that dehazing methods perform much better than con-
ventional technique and our method performs better on an average. Moreover,
from the proposed method, we also get depth information which can be used
to study the retinal structure in 3D. In future, we wish to improve our method
by reducing color artifacts and by taking into account spatially varying ambient
light intensity.
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