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Abstract. Detecting and monitoring changes in the human choroid play
a crucial role in treating ocular diseases such as myopia. However, reli-
able segmentation of optical coherence tomography (OCT) images at the
choroid-sclera interface (CSI) is notoriously difficult due to poor contrast,
signal loss and OCT artefacts. In this paper we present blockwise regis-
tration of successive scans to improve stability also during complete loss
of the CSI-signal. First, we formulated the problem as minimization of
a regularized energy functional. Then, we tested our automated method
for piecewise Intensity-based Choroidal rigid Registration using regular-
ized block matching (ICR) on 20 OCT 3D-volume scan-rescan data set
pairs. Finally, we used these data set pairs to determine the precision
of our method, while the accuracy was determined by comparing our
results with those using manually annotated scans.

Keywords: choroid-sclera, retinal layers, regularized block matching

1 Introduction

Myopia is a disease manifested by a disproportional growth of the eye bulb lead-
ing to a reduction and loss of visual function. It is widely diagnosed in Asian
urban regions and also strongly increases in western countries. It starts to de-
velop at school age leading to 80% incidence among teenagers. The strongly
varying thickness of the choroid, the blood-filled 50 to 300 µm thick layer un-
derneath the retina, encapsulated by the rigid sclera, is correlated to not only
myopia, but also to various other ocular diseases like diabetic retinopathy, in-
traocular tumors and macular degeneration [6]. This simple indicator is defined
as the distance between the Choriocapillaris-Bruch's membrane-Retinal pigment
epithelium complex (CBR) and the Choroid-Sclera Interface (CSI, see Fig. 1c).
Choroidal maps (see Fig. 1b) visualize the individually and locally strongly vary-
ing thickness distribution across the area of the central choroid and can aid to
extract essential clinical information. Likewise, the thickness of the retina, i.e.
the distance between the Inner Limiting Membrane (ILM) and the CBR, is visu-
alized by retinal maps (see Fig. 1a). The segmentation of the CBR is relatively
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simple (e.g. using automatic segmentation methods based on graph theory [3])
because of the strong and characteristic signal of the retinal images in Optical Co-
herence Tomography (OCT). It has become the main contact-free, non-invasive,
high-resolution imaging method that enables the detection of µm changes in the
human retina and the choroid [7]. Segmenting the CSI, however, is very difficult
due to the significantly lower image contrast, an increase of shadowing arte-
facts and unpredictable shape variations of the choroid [6]. Several studies (e.g.

Fig. 1: (a) Retinal (ILM-CBR) and (b) choroidal (CBR-CSI) thickness maps
calculated with ICR overlaid color-coded on fundus image. (c) OCT B-scan with
segmented ILM, CBR and CSI layers.

[3],[5],[9]) use single frame segmentation, which works well in cases with good
signal quality and smooth interfaces. However, this becomes difficult with less
compliant subjects or in longitudinal clinical studies where successive imaging
sessions can strongly vary in signal quality, leading to strong variations in image
and segmentation quality [5]. Thus, reliable quantification for detection of subtle
changes of choroidal thickness across a long sequence of sessions is error prone
and insufficient for precise monitoring.

Instead of segmenting each tomogram individually, we suggest using image
registration of image sequences obtained during a longitudinal study, utilizing
the a-priori topological knowledge from previous acquisitions.

Conventional registration methods (see review article [10]) will fail when
registering such OCT-data of the human eye (see Sec. 4). This is caused by
the interleaved nature of the eye consisting of the soft choroid and surrounding
more rigid tissues, the sclera and the CBR. It is therefore important, that sclera
and CBR are treated as a rigid body during registration. Although a non-rigid
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Fig. 2: Reference (a) and registered image (b) with corresponding blocks around
the approximately determined CSI layer. Image (c) shows the result of the reg-
ularized block matching represented by the optimal position (green blocks) and
the displacement field (green arrows) required for compensation.

Fig. 3: Refinement of regularized block matching using different levels of subdi-
visions between 8 blocks (k=1) and 128 blocks (k=5).

registration procedure is imposed by the physical characteristics of the choroid,
a piecewise rigid strategy [2] seems to be the most suitable and reliable approach
to accurately model the deformation of the choroid. It allows us to decompose
the global non-rigid matching problem of the choroid into numerous local rigid
registrations of the individual subregions. The results are then embodied into a
dense global non-rigid deformation field built in such a way that it elastically
deforms the soft choroid and preserves the rigid characteristics of the surrounding
sclera and CBR.

Our ICR method is based on the pre-segmentation of the CBR and CSI,
which is tracked via registration in successive scans to quantify its growth. On the
basis of the accurately segmented CBR, we approximate the position and shape
of the CSI. Utilizing the rigid CBR as a reference line, we conduct hierarchical
regularized block-matching [4] registration of the CSI (see Fig. 2 and 3). As the
images were aligned at the rigid CBR, the displacement corresponds to either an
increase or decrease of the CSI interface (see Fig. 2). This allows us to determine
the displacement field in the vicinity of the CSI layer and use the outcome as a
basis to quantify any choroidal growth.

2 Material & Method

In this section we first introduce the image acquisition process and then we
explain the processing pipeline in more detail. The OCT systems used were en-
hanced Spectralis OCT (Heidelberg Engineering) prototypes operating simulta-
neously at 800 nm and 1075 nm wavelength for obtaining different tissue contrast
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and penetration. The development of these dual wavelength SD-OCT system,
called Hydra Spectralis, was conducted at the University of Applied Sciences in
Biel, Switzerland. One of the systems is installed in the Centre for Myopia Re-
search in Hong Kong, China, to obtain clinical data for multiple cross-sectional
and longitudinal clinical studies in children and teenagers. We used 20 OCT
3D-volume data set pairs acquired as scan-rescan of 20 different Asian children
between 8 and 13 years old. Ten children had their left eye and ten others had
their right eye measured twice within a span of a few minutes. Each volume-

Fig. 4: The OCT scan acquisition system Hydra Spectralis.

stack consists of 25 B-scans at a lateral resolution in nasal-temporal/x-direction
(see Fig. 4) was set to 768 depth-scans per frame, acquired at 20 frames/second.
The axial resolution (in depth/z-direction) in the high speed acquisition mode
is 11.46 µm/pixel respectively 4.70 µm/pixel. The scanned area is 30◦× 20◦ in
x and y (including the optical nerve). Reproducibility of the scan locations is
maintained by a scanning laser ophthalmoscope (SLO)-based eye-tracking sys-
tem that independently raster scans the eye at µm-precision and laterally reposi-
tions the OCT-beams to the target area, thereby compensating involuntary eye
movement by stabilizing the z-position with a sturdy head-rest.

2.1 Preprocessing

Acquisition: A stack of up to 100 B-scans is acquired at the same position;
frames are checked versus the SLO position and converted to images.
Stack registration: The acquired number of B-scans of each location and ses-
sion are registered based on a similarity transformation (translation, rotation,
scaling). The registration method is extended by a three-level image pyramid for
multi-resolution image registration. The optimizer used for this task is a Regular
Step Gradient Descent algorithm. Images that do not pass a pre-set error-level
of 0.2 based on the normalized cross correlation are rejected. The registration
result is a 16-bit grayscale image.
Contrast enhancement and noise reduction: To enhance the contrast, his-
togram equalization is applied to the original grayscale OCT image. To remove
noise and locally improve the signal-to-noise ratio, Wiener filtering is slice-wise
used. The cohesion of regions is improved with slice-wise median filtering. The
averaged B-scans of multiple imaging sessions are combined to a new stack.
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Rigid registration of multi-session stack: Here we roughly align pairs of
corresponding B-scans from the reference and floating stack images at the CBR
level. To speed up this registration process we crop the images to remove the
uninteresting areas with a lot of noise above the ILM and beneath the choroid.
Segmentation of ILM and CBR: Using the on graph search based algorithm
presented in [3], we accurately segment the ILM and the CBR. Further on the
segmented CBR becomes the shape-reference for the CSI.

2.2 Piecewise rigid registration using regularized block matching

Let Ωj ⊂ R2 be the jth B-scans of size m × n [pixel2] in a volume stack Ω =⋃S
j=1Ωj ⊂ R3. We consider a reference IR and a template image IT : Ω → R

mapping Ω to the corresponding intensities. In this context, we consider image
registration as a regularized minimization problem for the energy functional J ,

min
u
J [u], J [u] = D[IR, IT , u] + λR[u] + µS[u]. (1)

D denotes a distance measure that quantifies the similarity between reference IR
and transformed image IT (p+ u(p)). R and S are regularization terms with the
corresponding balancing parameters λ and µ. They ensure certain properties of
the transformation, which we will explain next.

In each B-scan we divide the interval [0, n] into N equidistant cells of width
ω = n

N and cell centers xi = (2i − 1)ω
2 , i = 1, . . . , N . Let di be the distance

between the segmented CBR and the roughly determined CSI at each location
xi, let ka and ku be two constants. We describe with ka ·di the block part above
the CSI and with ku · di the block part below. Thus, we obtain in each B-scan

Ωj non-overlapping rectangular blocks
{
Bji
}N
i=1

with constant width ω, variable
height hi = (ka + ku) · di and center points pi.

The aim is to find a set U = {uji} of blockwise constant transformations uji ∈
R3 such that IT (p + uji ) ≈ IR(p) for all p ∈ Bj

i . U represents the displacement
field between corresponding scans from the same individual.

At the first resolution level k = 1 we initialize the block matching with 8
blocks. Applying a hierarchical strategy [1], each time we obtainN = 16, 32, . . . , 128
blocks for every following level k = 2, . . . , 5 (see Fig. 3). Using piecewise intensity-
based local rigid registration, we attempt to obtain the maximum correlation by
matching blocks of the pre-determined CSI layer from the pre-registered image
with the ones in the corresponding, slightly bigger search area B̂ji ⊃ Bji .

We define the similarity measure

D[IR, IT , u
j
i ] =

S∑

j=1

N∑

i=1

∫

p∈Bj
i

Gi(p) L(IT (p+ uji ), IR(p)) dp, (2)

using as loss function L the L2 norm = || · ||2:

L(IT (p+ uji ), IR(p)) = ||IT (p+ uji )− IR(p)||2, (3)
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Fig. 5: With the term S[uji ] we regularize in the scan depth across B-scans (note
that the distance between the slices has been increased for better visualization).
Blue lines indicate correlations between sites.

where p is the point position in block Bji ⊂ Ωj and

Gi(p) : Ωj → R+
0 , Gi(p) =

{
e−||p−p̂i||2 if p̂ = p+ uji ∈ B̂ji
0 otherwise,

(4)

is a weighting function which penalizes matches far off the target, where p̂i is the
center point of the matched block. Furthermore, we calculate for each B-scan the
optimal 2nd order polynomial which approximates the CBR-layer to obtain K,
the average of all curvatures. We use K as lower boundary for the regularization
term R,

R[uji ] =

S∑

j=1

N∑

i=1

(||D2
x[uji ]|| − K)2, (5)

where D2
x is the 2nd order difference operator in x-direction. We calculate D2

x by
fitting a cubic spline through the centers of the blocks and calculating its 2nd or-
der derivative. R penalizes non-smooth solutions, to avoid extreme values of the
curvature of the CSI layer. In this way we regularize the vertical displacements
of the blocks within a B-scan in comparison to the blocks of the corresponding
reference scan. With the term S,

S[uji ] =
S∑

j=1

N∑

i=1

||D2
y[uji ]||2, (6)

we regularize in the depth of the volume stack Ω (in y-direction, see Fig. 5).
We calculate D2

y similarly to D2
x. With this additional regularization we take

into account not only the adjacent blocks within the same B-scan, but also the
corresponding blocks in the neighboring scans.

38 T. Ronchetti et al.



Table 1: Mean (x̄), standard deviation (s) and median (x̃) of the 20 data set
pairs (in [µm]) for ICR and manual (man.) registration.

k=1 k=2 k=3 k=4 k=5
Method ICR man. ICR man. ICR man. ICR man. ICR man.

x̄ 3.52 6.03 3.62 7.16 3.92 8.64 4.15 10.44 6.81 15.96
s 0.92 1.91 1.58 3.08 1.83 4.15 2.25 5.85 3.69 7.94
x̃ 3.13 5.86 3.43 6.03 3.20 7.39 3.39 9.31 6.06 17.29
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(a) Our method ICR

k=1 k=2 k=3 k=4 k=5
0

5

10

15

20

m
e

a
n

 v
a

lu
e

s
 i
n

 [
u

m
]

(b) Manual detection

Fig. 6: The automated (a) and the manual (b) detection of block displacements.

3 Results

We have tested our algorithm on the 20 data set pairs for each level k and
compared it to manual segmentation by a professional ophthalmologist. The re-
sults are shown in Tab. 1. Figure 6a depicts the mean values of all the block
displacements in the template image during the regularized block matching for
all 20 data set pairs. To get the optimal combination of precise results and a
high spatial resolution, the best level of registration for our data set is k = 4.
This enables us to find choroidal changes at 64 different positions. Starting with
k = 5 a significant deterioration of the scan-rescan results can be observed.
This is caused by the spatially high frequency noise of speckle that cannot be
counteracted by a large structural signal in such a fine subdivision and leads
to improper patch registration. Consequently, the results of the block matching
algorithm become inaccurate. Figure 6b shows the mean values of all the block
displacements after manual segmentation of the CBR and CSI, followed by man-
ual block building and matching (the blocks have been located by an expert as
described in Sec. 2.2). A comparison of the accuracy of our method ICR and the
manual detection has shown that, with increasing spatial resolution, our method
still recognizes minute changes < 5 µm up to the level k = 4, which could not
be attained by an ophthalmologist, even at a higher resolution.

4 Discussion & Outlook

As mentioned in Sec. 1 the application of general 3D registration algorithms
is in this case not useful, i.e. even the use of the smoothing parameter sigma
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by Demons registration algorithm [8] does not allow a satisfactory registration.
With a small value of sigma the template matches the image of reference, but
deformations are produced. By increasing the value of sigma, the deformations
are reduced, but the images can no longer be aligned. The total time needed by
our algorithm for one scan-rescan data set pair of 25 B-scans is 295 s on average2,
which already makes it usable in clinical routine. We believe that an improvement
in terms of computation time can be achieved with parallelization in MATLAB,
followed by implementing the method in C++. We intend to apply our method
on test persons over an extended period of time and later also on patients with
eye diseases. In addition, we plan to investigate the connection between the shape
of the eye (curvature of the sclera) and myopia. We also consider the possibility to
apply our algorithm in other fields (e.g. OCT-dermatology, ultrasound imaging).
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