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Abstract. In this paper, we propose two vesselness maps and a simple
to difficult learning framework for retinal vessel segmentation which is
ground truth free. The first vesselness map is the multiscale centreline-
boundary contrast map which is inspired by the appearance of vessels.
The other is the difference of diffusion map which measures the difference
of the diffused image and the original one. Meanwhile, two existing ves-
selness maps are generated. Totally, 4 vesselness maps are generated. In
each vesselness map, pixels with large vesselness values are regarded as
positive samples. Pixels around the positive samples with small vesselness
values are regarded as negative samples. Then we learn a strong classifier
for the retinal image based on other 3 vesselness maps to determine the
pixels with mediocre values in single vesselness map. Finally, pixels with
two classifier supports are labelled as vessel pixels. The experimental
results on DRIVE and STARE show that our method outperforms the
state-of-the-art unsupervised methods and achieves competitive perfor-
mances to supervised methods.

1 Introduction

Retinal fundus images provide a window to inspect the fundus of the eye, and
they are widely used for the diagnosis of various pathologies, such as age related
macular degeneration and diabetic retinopathy, glaucoma etc. Manual analy-
sis of the retinal images is time consuming and expensive for ophthalmologists.
Moreover, it is impossible to quantify the structures accurately in the fundus.
Therefore, the automation of the analysis becomes important.

As one of the basic procedures in automatic analysis, vessel segmentation is
still a challenge task. On one hand, the width of the vessels has large variability.
For example, vessels at the end of each branch are always only several pixel
width or even only one pixel width in the images. On the other hand, due to low
image quality, the retinal images are noised and in various brightness.
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Recently, several methods have been proposed to segment the vessels from
the retinal fundus images, which can be classified into two classes, i.e., unsuper-
vised methods and supervised methods.

1) Unsupervised Methods: The unsupervised methods model for the shape
prior, appearance prior or the profile prior of the vessels. For example, Zana F. et
al [1] propose to use mathematical morphology operators with linear structuring
elements to model the vessels’ morphological properties, such as linearity, con-
nectivity. Mendonca A. M. et al. [2] use a top-hat transform with circular struc-
turing elements to enhance the vessels first, then reconstruction operators are
used to segment the vessels. Inspired by the profile prior of the vessel, matched
filters such as trainable COSFIRE filters [3], multiscale line filters [4], first-order
of derivative of Gaussian [5] are proposed to model the profile of vessels. Such
methods rely on thresholding filter responses to obtain the vessel points. The
performances are sensitive to the threshold selection. Usually, a large threshold
results in numerous missing detection of vessel pixels while a small threshold
leads to lots of wrong detection of background pixels. Moreover, they are limited
when the vessel is slightly different with the expected pattern.

2) Supervised Methods: The supervised methods relying on the ground truth
learn feature aggregation strategies to detect the vessels. For example, Ricci
E. et al. [6] learn a support vector machine (SVM) to detect the vessel points
from line filter responses. Lupascu C.A. et al. [7] learn an Adaboost classifier
which takes multiscale local intensity structure, spatial properties and geom-
etry features as input while [8] learn a LogitBoost classifier. In [9], gray-level
and moment invariants based features are extracted to learn a neural network
scheme for vessel segmentation. In [10], a deep neural network is trained to learn
a cross-modality data transform from retinal image to vessel map. Supervised
methods are more invariable to vessel deformations and brightness since they
combine different priors about the vessels. However, in such methods, an extra
time-consuming off-line learning process is required and the ground truth are
necessary. It is obvious that professional skills are required to the tedious pixel
level ground truth labelling. Besides, such methods are dataset dependant, and
their performances decrease remarkably when testing on other datasets.

To alleviate the extra learning process and avoid ground truth labelling, we
present a ground truth free learning framework to segment the vessels. First, two
weak vesselness maps are proposed. One is called centreline-boundary contrast,
modelling for the appearances of the vessels. The other is called the difference
of diffusion which use the difference between the diffused image and the original
one to measure the vesselness. Meanwhile, other two existing vesselness maps,
i.e., the response map of B-COSFIRE filter [3] and line detector response map
[4] are also extracted. Those weak vesselness maps are used to generate training
samples for strong models. Second, for the training sample set from one weak
vesselness map of one retinal image, a strong classifier is learnt to detect the
vessel pixels. Totally, four classifiers are learnt for each retinal image and pixels
those win two or more than two votes are classified as vessel pixels finally.

In the remainder of this paper, we first introduce the proposed method in
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Section 2 in detail. Then we report our experimental results and the comparisons
to the state of the arts in Section 3. Finally, we conclude our paper in Section 4.

2 Proposed Approach

The simple to difficult learning framework includes two steps. One is weak ves-
selness maps generation and the other is strong classifiers learning. The final
results are obtained by voting.

2.1 Weak Vesselness Maps Generation

We extract vesselness features from the green channel of the RGB retinal images
since the contrast between vessels and background in green channel is higher
than in the red and blue ones. We extract 4 weak vesselness maps to generate
the training samples for strong classifier learning. They are the output of the
multiscale line filters (fL) [4] , the output of B-COSFIRE filters (fB) [3], the
multiscale centreline-boundary contrast map (fC), the difference of the diffusion
map (fD). Since the first two vesselness maps have been described in [4] and [3]
respectively, in the following, we describe the latter two features in detail.
Multiscale Centreline-Boundary Contrast

According to the properties that the intensities of the vessels are lower than
the background pixels and the vessels seem to be linear locally, we present a
centreline-boundary contrast filter with line structure to enhance the vessels.
Fig. 1a shows a basic centreline-surround contrast filter with size 5×7. Generally,
we define a basic (2r1 + 1) × (2r2 + 1) centreline-boundary contrast filter with
direction 0◦ by:

G(x, y; r1, r2, 0
◦) =





1/(4r2 + 2) if x = 1 or x = (2r1 + 1)
−1/(2r2 + 1) if x = r1 + 1
0 otherwise

(1)

Vessels distribute over the whole retinal image and converge into the optic
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Fig. 1: (a) A 5×7 centreline-boundary contrast filter with line structure. (b) The
input image. (c) The centreline-boundary contrast vesselness map.
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disk from different directions. Moreover, the width of vessels are variable. Usu-
ally, the width of the trunk vessels are larger than their branch vessels. To handle
the vessels in different directions, we rotate G(·; r1, r2, 0◦) every 15◦ from 0◦

to 180◦, and generate 12 filters. To enhance the vessels with variable width, we
further generalise the centreline-boundary contrast filter by varying the width
r1 and r2 from 3 to 19 with step 2. Correspondingly, given an image I, the
centreline-boundary contrast vesselness map is computed by:

fC =
∑

r1,r2

max
θ
I ◦G(·; r1, r2, θ) (2)

where ◦ is a convolution operator. Thus, vessel-like pixels are enhanced due to
their high contrast to background while the background pixels are suppressed for
their smoothness. Fig. 1c shows an example of a multiscale centreline-boundary
contrast map.
Difference of Diffusion

Regarding the image as a partial differential equation (PDE) based diffusion
system, we mathematically formulate the image diffusion as an evolutionary
PDE controlled by a function g(x, y, t):

∂I

∂t
= DIV (g(x, y, t)5 I) (3)

where DIV is a divergence operator, g(x, y, t) is a non-linear diffusion function of
t, 5 = [ ∂∂x ,

∂
∂y ] is the spatial gradient. We adopt Tri-diagonal matrix algorithm

to solve the diffusion equation [11]. The distribution of the intensities will reach
equilibrium as time goes on. Since the background regions are almost homoge-
neous and they account for a large part of the image, the difference between
their diffused state and their initial states are small. On the contrary, the vessel
pixels always have lower intensities than their surrounding pixels and account
for only a small part of the image. The difference between their diffused states
and their initial states are remarkable. Therefore, we use the difference between
the diffused image and the original one to measure the vesselness:

fD = IE − I (4)

where IE is the diffused image when t = 5.

2.2 Vessel Segmentation From Simple to Difficult

Until now, we obtain 4 weak vesselness maps. We normalise each vesselness map
into [0, 1], and the vesselness value indicates the probability of the pixel to be a
vessel pixel. In each vesselness map, the pixels with extremely large vesselness
values can be easily detected as vessel pixels. Similarly, pixels with extremely
small vesselness values can be easily detected as background pixels. We call those
pixels are simple pixels. The labels of pixels with mediocre vesselness values are
controversial only according to one single vesselness map. We call those pixels
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Fig. 2: Strong classifier learning on simple pixels and candidate pixels classifica-
tion in fL. The top T1 pixels in fL consist of the positive samples. The top T2
pixels in fL consist of the test set. The pixels around the test set consist of the
negative samples. The learning process flow is marked in green arrows while the
candidate pixels classification is marked in blue arrows.

difficult pixels. To determine the labels of the difficult pixels, we learn a strong
classifier on simple pixels sampled from one single vesselness map leveraging to
the other 3 vesselness maps.

Formally, for each weak vesselness map fk ∈ {fL, fB , fC , fD}, we first de-
compose it into two sets: the vessel candidate set SC and the background set
SB . SC collects the top T1 pixels and SB collects the rest pixels. Pixels in SB are
directly regarded as background pixels while the labels of pixels in SC are given
by a strong classifier. To learn the strong classifier, we first generate training
samples from fk. We take the top T2 pixels in fk as positive samples, denoted
as S+. Pixels around the SC are regarded as negative samples, denoted by S−.
S+ and S− consist of the training data {S+ ∪ S−}. We use the rest 3 vesselness
maps {fL, fB , fC , fD}/fk to describe the samples in the training set. Since the
green intensity fI itself and the local mean removed green intensity fM also
have discriminabilities, we add them into the feature vector. Thus, each sample
is described by a 5-D feature vector. Given the training samples, we train a SVM
classifier with radial basis function to determine whether the pixels in SC are
vessel points or not. Totally, we learn four classifiers and obtain four binary seg-
mentations. To generate a final vessel segmentation, pixels that are supported
by at least two classifiers are labelled as vessel pixels. Taking the weak vesselness
map fL as an example, Fig. 2 illustrates the proposed learning framework.
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3 Experimental Results

We use two widely used public datasets to evaluate the proposed method. One
is DRIVE [12] which includes 20 retinal images for training and 20 images for
testing. For each image, two manually segmented maps by two observers and a
mask image are provided. The other is STARE [13], which include 20 images
and two corresponding manually segmentations by two different observers. In
STARE, there are 10 images containing signs of pathologies and 10 healthy reti-
nal images. In our experiments, we set T1 = 12%, T2 = 7% for DRIVE and
T1 = 12%, T2 = 5% for STARE.

Following previous methods [3] [8] [10], we adopt accuracy (Acc), sensitivity
(Se), specificity (Sp) to compare the performance of the proposed method with
the state-of-the-art methods. The accuracy measures the proportion of pixels
that are correctly detected. The sensitivity measure the proportion of vessel pix-
els that are correctly detected. The specificity is the proportion of background
pixels that are correctly detected. Conventionally, only the pixels in the field of
the view are taken into consideration since pixels out the field of the view can
be easily labelled as background via thresholding.

To demonstrate the effectiveness of the proposed simple to difficult learning
framework, we compare the final performances with the performances of each sin-
gle component. Table. 1 shows that after our simple to difficult learning scheme,
the sensitivities, specificities and accuracies on both two datasets are superior
to each single component. Meanwhile, we can see that the two proposed ves-
selness maps, especially the centreline-boundary contrast map, also have strong
discriminant ability.

We further compare our method with 4 supervised methods and 4 unsuper-
vised methods. The results of the proposed method and the compared methods
on DIRVE[12] and STARE[13] are reported in Table. 2 and Table. 3 respec-
tively. Generally, the proposed method outperforms the unsupervised methods
in terms of sensitivity, specificity and accuracy on both two datasets. Compared
to supervised methods, the proposed method still achieves better sensitivity. The
performance of the supervised methods [8] and [10] significantly outperforms the
proposed method on DRIVE when the models are trained on the training images
from DRIVE. However when the models are trained on STARE, their accuracies
decrease to 0.9456 and 0.9486 respectively while ours is 0.9451. It’s worth not-
ing that the proposed method outperforms most of the supervised methods on
STARE dataset except for [10]. Even though, our method achieves competitive

Table 1: Component analysis on DRIVE and STARE datasets

feature type
DRIVE STARE

Se Sp Acc Se Sp Acc

centreline-boundary contrast 0.7659 0.9604 0.9354 0.7037 0.9766 0.9493

difference of diffusion 0.7388 0.9561 0.9283 0.6217 0.9843 0.9470

line detector [4] N.A N.A 0.9324 N.A N.A 0.9324

B-COSFIRE [3] 0.7655 0.9704 0.9442 0.7716 0.9563 0.9497

proposed method 0.7718 0.9707 0.9451 0.7822 0.9745 0.9541
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accuracy to [10] when [10] trained the model on DRIVE. The visual comparisons
between [3], [4] and our method are provided in our supplementary material.

4 Conclusion

In this paper, we present two features and a new framework for vessel segmen-
tation in retinal images. Our framework learns classifiers from the pixels whose
labels can be determined easily to determine the labels of the pixels that are
controversial in a single feature map. Our method shows its advantages in two
aspects: (1) comparing to unsupervised methods, our method avoids the sensi-
tive threshold selection; (2) comparing to supervised methods, our method does
not rely on the expensive ground truth. Our experimental results on two pub-
lic datasets illustrate that the proposed method outperforms the state of the
art unsupervised methods on DRIVE and STARE datasets. Compared to super-
vised methods, the proposed ground truth free method also achieves competitive
performances.

Table 2: Comparisons with state-of-the-art methods on the DRIVE dataset.
type methods Se Sp Acc

Second observer 0.7796 0.9717 0.9470

Supervised
methods

Staal et al. (2004) [12] N.A N.A 0.9441
Soares et al. (2006) [14] 0.7332 0.9782 0.9461
Fraz et al. (2012) [8] trained on DRIVE 0.7406 0.9807 0.9480
Fraz et al. (2012) [8] trained on STARE 0.7242 0.9792 0.9456
Li et al. (2016) [10] trained on DRIVE 0.7569 0.9816 0.9527
Li et al. (2016) [10] trained on STARE 0.7273 0.9810 0.9486

Unsupervised
methods

Al-Diri et al. (2009) [15] 0.7282 0.9551 N.A
Fraz et al. (2012) [16] 0.7152 0.9759 0.9430
Nguyen et al. (2013) [4] N.A N.A 0.9407
Azzopardi et al. (2015) [3] 0.7655 0.9704 0.9442

Proposed method 0.7718 0.9707 0.9451

Table 3: Comparisons with state-of-the-art methods on the STARE dataset.
type methods Se Sp Acc

Second observer 0.8951 0.9384 0.9348

Supervised
methods

Staal et al. (2004) [12] N.A N.A 0.9516
Soares et al. (2006) [14] 0.7207 0.9747 0.9479
Fraz et al. (2012) [8] trained on STARE 0.7548 0.9763 0.9534
Fraz et al. (2012) [8] trained on DRIVE 0.7010 0.9770 0.9495
Li et al. (2016) [10] trained on STARE 0.7726 0.9844 0.9628
Li et al. (2016) [10] trained on DRIVE 0.7027 0.9828 0.9545

Unsupervised
methods

Al-Diri et al. (2009) [15] 0.7521 0.9681 N.A
Fraz et al. (2012) [16] 0.7311 0.968 0.9442
Nguyen et al. (2013) [4] N.A N.A 0.9324
Azzopardi et al. (2015) [3] 0.7716 0.9563 0.9497

Proposed method 0.7822 0.9745 0.9541
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