NHEC 2014

Velocity Distribution with Dipphenomenon in Conic Open Channels

Junke Guo
University of Nebraska-Lincoln

with Contributions from
Amin Mohebbi, Yuan Zhai, Jerry Chen, Kornel Kerenyi
August 19-22, 2014

Overview

- Problem
»How about velocity distribution in conic open channels?
» Conic sections: highway culvert + sub-drain (circle, ellipse), stream section (parabola), trapezoidal section with sediment deposition (hyperbola)
- Motivation

Velocity contours are required for fish passage culvert and stage-discharge relationship
Maximum velocity and its position is required for self-clean subdrain system

- Objective

Find the cross-sectional velocity distribution in conic channels

- Approach

Scientific method: Observation -> hypothesis -> test with data -> application for fish passage

Conic Sections

Hypothesis and Its Test

- Cross-sectional velocity distribution is described by
» Dip (or maximum velocity) position
» Centerline velocity distribution
» Cross-sectional velocity distribution

(a) Dip-position

(b) Centerline velocity

(c) Velocity contours

Hypothesis and Its Test (cont.)

- Observation:

Centerline Velocity

- Hypothesis: Log-cubic law

$$
\frac{u \cup 0, z \mathrm{P}}{u_{\mathrm{D} b}}=\frac{1}{\square}\left[\ln \frac{z}{z_{0}} ? \frac{1}{3}\left(\frac{z}{\square}\right)^{3}\right]
$$

Hypothesis and Its Test (cont.)

- Test of centerline velocity

Hypothesis and Its Test (cont.)

- Hypothesis: cross-section, double log-cubic law:

$$
\frac{u\{0, z P Q u \hat{y}, z \mathrm{D}}{u_{\mathrm{D}}}=? \frac{1}{Z}\left\{\ln \left(1 ?\left|\frac{y}{y_{b}}\right|\right)+\frac{1}{3}\left[1 ?\left(1 ?\left|\frac{y}{y_{b}}\right|\right)^{3}\right]\right\}
$$

- Test with data

Clark and Kehler (2011)
Left-half: data
Right-half: model

Hypothesis and Its Test (cont.)

- Dip-position: Obtained by integrating the cross-sectional velocity distribution for discharge.

$$
\frac{1}{\beta^{7}}=\frac{3}{I_{2}}\left(I_{1} ? \frac{A \ln z_{0}}{2} ? \frac{3 A}{8 \square} ? \frac{\boxed{Q}}{2 u_{D C}}\right)
$$

- For Clark and Kehler (2011), It is about 60% of flow depth.

Confirmed by data.

	Test Conditions						Fitting and computing parameters						
Test	S_{f}	h	h/D	Q3	V	u_{*}	$\mathrm{k}_{\text {s }}$	u_{*}	$\mathrm{u}_{*}{ }_{c}$	d	d / h	Error	r^{2}
	(-)	(m)	(-)	$\left(m^{3} \mathrm{~s}^{-1}\right)$	$\left(\mathrm{ms}^{-1}\right)$	$\left(\mathrm{ms}^{-1}\right)$	(mm)	$\left(\mathrm{ms}^{-1}\right)$	$\left(\mathrm{ms}^{-1}\right)$	(m)	(-)	(-)	(-)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
1	0.00028	0.49	0.61	0.086	0.26	0.025	43	0.025	0.028	0.29	0.58	1.99	0.987
2	0.0011	0.35	0.44	0.086	0.40	0.045	69	0.048	0.053	0.21	0.59	2.30	0.986
3	0.0011	0.52	0.65	0.176	0.51	0.050	55	0.052	0.057	0.29	0.59	2.15	0.982
4	0.0027	0.27	0.34	0.085	0.56	0.064	64	0.069	0.076	0.17	0.61	2.75	0.982
5	0.0027	0.40	0.51	0.176	0.69	0.073	63	0.078	0.085	0.23	0.58	1.11	0.994

Applications for Fish Passage

- The proposed cross-sectional velocity distribution law can be used to find the velocity contours for fish passage.
- Detailed procedure is found in

Guo, J., Mohebbi, A, Zhai, Y., Clark, S. (2014). Turbulent velocity distribution with dip-phenomenon in conic open channels. J. Hydraulic Res. (in press)

- Research need:

Programs with spreadsheet, Matlab, or other math software are needed for practical engineers.

Velocity Contours for Other Conic Sections

(b)

(c)

Conclusions

- Conic cross-sectional velocity contours are described by a double log-cubic law.
- The proposed model is confirmed by data.
- It can be used to specify velocity contours for fish passage culverts.
- Research is needed for developing programs with spreadsheet, Matlab and other software for practical engineers.

