NHEC 2014

Velocity Distribution with Dipphenomenon in Conic Open Channels

Junke Guo University of Nebraska-Lincoln

with Contributions from Amin Mohebbi, Yuan Zhai, Jerry Chen, Kornel Kerenyi

August 19-22, 2014

Overview

Problem

- » How about velocity distribution in **conic** open channels?
- » Conic sections: highway culvert + sub-drain (circle, ellipse), stream section (parabola), trapezoidal section with sediment deposition (hyperbola)

Motivation

- » Velocity contours are required for fish passage culvert and stage-discharge relationship
- » Maximum velocity and its position is required for self-clean subdrain system

Objective

» Find the cross-sectional velocity distribution in conic channels

Approach

» Scientific method: Observation -> hypothesis -> test with data -> application for fish passage

Conic Sections

3

Hypothesis and Its Test

Cross-sectional velocity distribution is described by

- » Dip (or maximum velocity) position
- » Centerline velocity distribution
- » Cross-sectional velocity distribution

Observation:

Centerline Velocity

Hypothesis: Log-cubic law

$$\frac{u\dot{\mathbf{y}}_{0,z\mathbf{p}}}{u_{\mathbf{D}b}} = \frac{1}{\left[\ln \frac{z}{z_0} ? \frac{1}{3} \left(\frac{z}{\mathbf{D}} \right)^3 \right]}$$

• Test of centerline velocity

• Hypothesis: cross-section, double log-cubic law:

$$\frac{u \dot{y}_{0,z} \not\models u \dot{y}_{y,z} \not\models}{u_{\mathsf{D}}} = ? \frac{1}{\Box} \left\{ \ln \left(1 ? \left| \frac{y}{y_{b}} \right| \right) + \frac{1}{3} \left[1 ? \left(1 ? \left| \frac{y}{y_{b}} \right| \right)^{3} \right] \right\}$$

Test with data

- » Clark and Kehler (2011)
- » Left-half: data
- » Right-half: model

 Dip-position: Obtained by integrating the cross-sectional velocity distribution for discharge.

$$\frac{1}{\sqrt{37}} = \frac{3}{I_2} \left(I_1 ? \frac{A \ln z_0}{2} ? \frac{3A}{8} ? \frac{1}{2u_{\text{D}}} \right)$$

- For Clark and Kehler (2011), It is about 60% of flow depth.
 - » Confirmed by data.

	Test Conditions						Fitting and computing parameters						
Test	S _f	h	h/D	Q3	V	U.	k _s	U.	u _{*c}	d	d /h	Error	r ²
	(-)	(m)	(-)	(m ³ s ⁻¹)	(ms ⁻¹)	(ms ⁻¹)	(mm)	(ms ⁻¹)	(ms ⁻¹)	(m)	(-)	(-)	(-)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
1	0.00028	0.49	0.61	0.086	0.26	0.025	43	0.025	0.028	0.29	0.58	1.99	0.987
2	0.0011	0.35	0.44	0.086	0.40	0.045	69	0.048	0.053	0.21	0.59	2.30	0.986
3	0.0011	0.52	0.65	0.176	0.51	0.050	55	0.052	0.057	0.29	0.59	2.15	0.982
4	0.0027	0.27	0.34	0.085	0.56	0.064	64	0.069	0.076	0.17	0.61	2.75	0.982
5	0.0027	0.40	0.51	0.176	0.69	0.073	63	0.078	0.085	0.23	0.58	1.11	0.994

Applications for Fish Passage

 The proposed cross-sectional velocity distribution law can be used to find the velocity contours for fish passage.

Detailed procedure is found in

» Guo, J., Mohebbi, A, Zhai, Y., Clark, S. (2014). Turbulent velocity distribution with dip-phenomenon in conic open channels. J. Hydraulic Res. (in press)

Research need:

» Programs with spreadsheet, Matlab, or other math software are needed for practical engineers.

Velocity Contours for Other Conic Sections

Conclusions

- Conic cross-sectional velocity contours are described by a double log-cubic law.
- The proposed model is confirmed by data.
- It can be used to specify velocity contours for fish passage culverts.
- Research is needed for developing programs with spreadsheet, Matlab and other software for practical engineers.