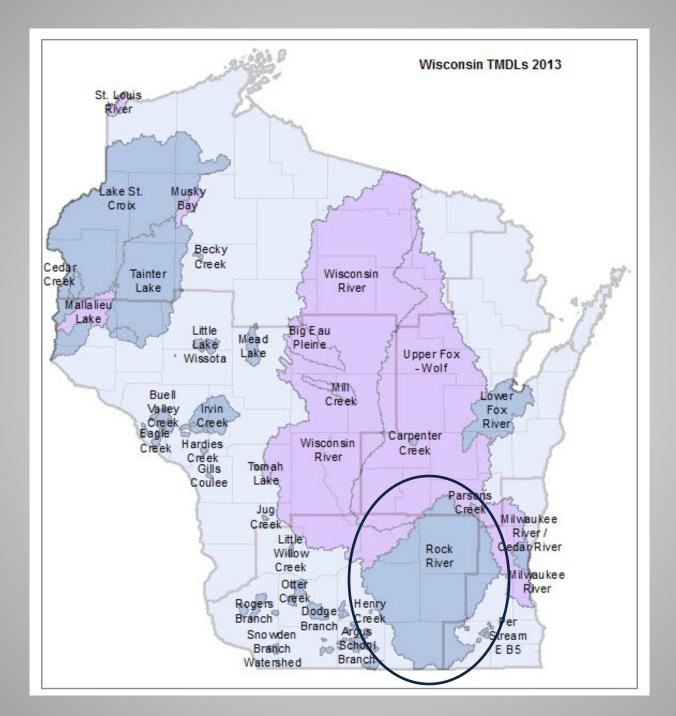
TMDL Implementation for Wisconsin DOT

Ann-Marie E. Kirsch, PE Wisconsin Department of Transportation Madison, WI

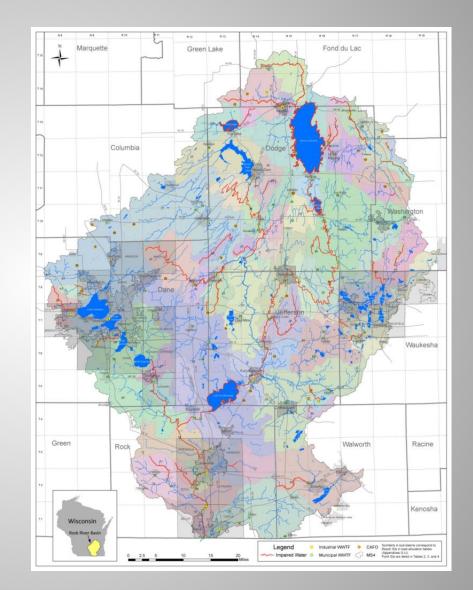
National Hydraulic Engineers Conference Iowa City, IA August 20, 2014

TMDL Reduction Determination for a Highway System


TMDLs

- TMDL = Total Maximum Daily Load
- Defines pollutant load acceptable to water body such that the water meets its designated use.
- TMDLs completed and under development
 - Rock River—in implementation phase
 - Lower Fox—analysis complete, but likely revisions coming
 - Upper Fox, Wisconsin River, and Milwaukee Rivers—under development
- Sediment and phosphorus—most critical to DOT

TMDLs can be expressed through a formula:

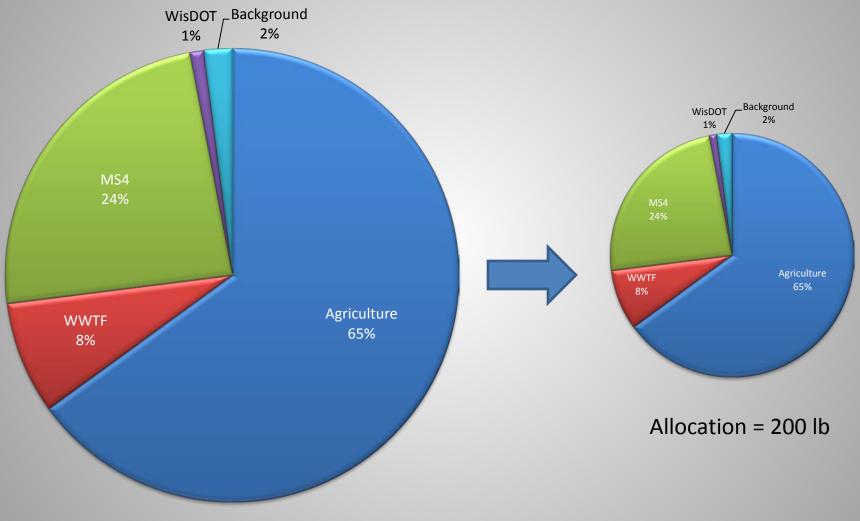

WLA + LA + MOS = TMDL

- WLA or Wasteload Allocation refers to the pollutant load from point sources: industrial and municipal treatment plants, municipal stormwater, CAFOs, etc.
- LA or Load Allocation refers to nonpoint sources such as: runoff from residential yards, parking lots, agricultural fields and barnyards.
- MOS or Margin of Safety refers to the level of uncertainty in the analysis.

TMDL Reduction Determination for a Highway System

- **Rock River Basin**
- >3,750 square miles
- 62 listed waters for TSS, TP, or both
- ≻101 TMDLs
- ≻49 MS4s
- ≻76 permitted WWTFs
 - 15 industrial,
 - 61 municipal
- ≻27 CAFO's

Rock River TMDL Analysis Components

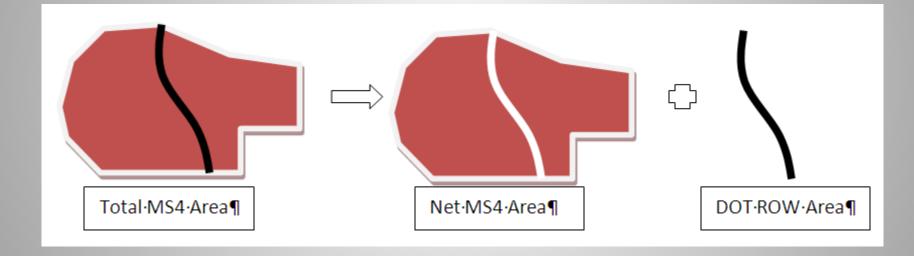

Loading Analysis consisted of four components:

- Agricultural Runoff (cropland, manure spreading, and other rural lands) - SWAT modeling
- 2. CAFOs assume 0 load
- 3. WWTFs (public & private) Permit Limits
- - a) Unit Loads based on WinSLAMM (NR216) results
 - b) TMDL "base" = 40% TSS control
 - c) Waste Load Allocation based upon the capacity of the receiving waters in each reach shed to absorb the Phosphorus and Sediment discharged in stormwater runoff

WisDOT goal – To only discharge pollutants in DOT stormwater runoff equal to the Corridor Waste Load Allocation

Implementation Challenges

- Scale: 3750 mi² watershed vs. 40 mile highway corridor
- Timing: Implementation plan not yet completed
- Models: TMDL used agriculture based SWAT model, highway design uses SLAMM
- DOT facilities modeled as part of surrounding MS4s



Baseline = 1000 lb

Example

- Total reduction required = 800 lbs
- DOT is 1 percent of load, so is responsible for 1 percent of the required reduction (8 lbs)
- The greatest load generators are responsible for the greatest reductions

Determine WisDOT load as percentage of MS4 load

Load = Total Area * Unit Load

Load = Net Area * Unit Load

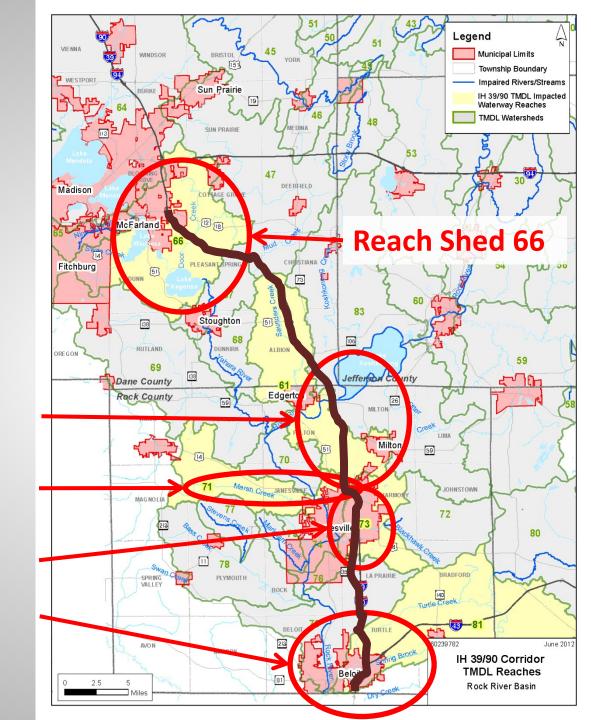
Load = Computed using SLAMM

Positives

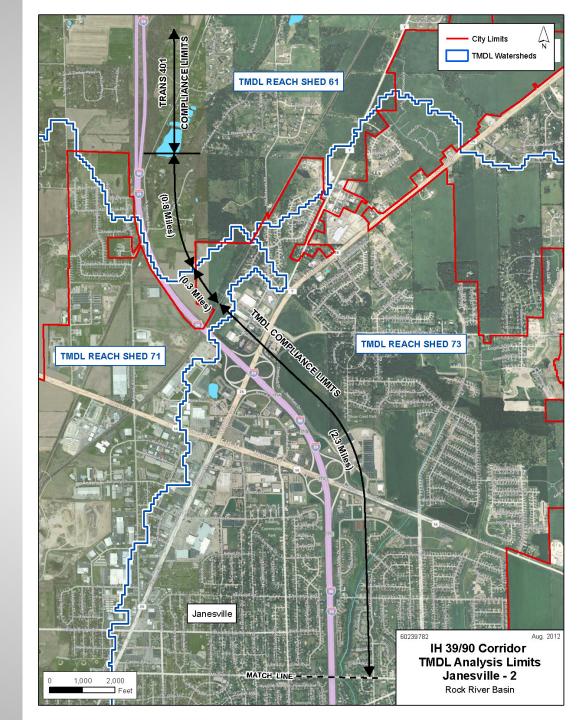
- Perceived fairness
- Limited change in potential reduction based on recalculation of others' loads
- Not sensitive to treatment of pervious surface in ROW
- Required load reductions are achievable and not costprohibitive

Negatives

- Actual MS4 urban loads are unknown
- Reductions are higher than required by TRANS 401


I-39/90 Corridor TMDL Reaches

Reach Shed 61


Reach Shed 71

Reach Shed 73

Reach Shed 81

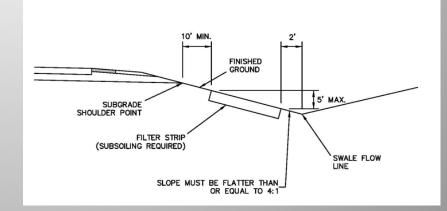
Janesville North

Corridor TMDL Area TSS and TP Reduction Requirements

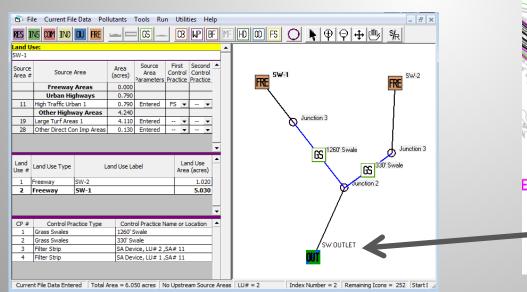
MS4 Municipality	Reach Shed Number	TMDL Section of Corridor Length in Reach Shed (mi)	TRANS 401 Section of Corridor Length in Reach Shed (mi)	Percent Total Phosphorus Load Reduction	Percent TSS Load Reduction	Notes	
Janesville	61	0.86	13.71	N/A	40.0 %	No added TMDL reductions required beyond TRANS 401	
Madison	66	1.50	4.34	70.4 %	76.9 %	May be combined with non-MS4 area in reach shed	
Janesville	71	0.35	0.00	59.5 %	71.0 %	No non-MS4 area in reach shed	
Janesville	73	4.70	0.89	80.2 %	82.8 %	May be combined with non-MS4 area in reach shed	
Beloit	81	3.23	2.05	47.3 %	40.5 %	May be combined with non-MS4 area in reach shed	

To Achieve these Percent Reductions WisDOT will -

- 1. Primarily rely on practices like filter strips, grass swales and biofiltration fields
- 2. Use enhanced and engineered soils to increase TSS reduction where appropriate
- 3. Share credits within Reach Sheds by achieving reductions greater than 40% in TRANS 401 areas
- If required load reductions prove unfeasible, work with DNR on alternatives without affecting project schedules


- Each project engineer designs roadways with standard drainage practices
- Areas with more right-ofway, such as interchanges, include infiltration fields
- Designers calculate the load reductions from practices using either unit area loads or modeling

Unit Area Loads – Typically applied to roadway segments


- Pollutant loads (Total Suspended Solids and Total Phosphorus) determined from unit area values developed for highway corridors using WinSLAMM
- Pollutant load reductions determined using highway specific design charts developed from WinSLAMM model runs

Modeling – Typically applied to interchanges

 Pollutant loads and load reductions determined from drainage network model using WinSLAMM

Load Reduction Table

- Load calculations are summarized for each project and reported to the I-39/90 Corridor Management Team
- All project load summaries are tabulated and submitted to the Wisconsin Department of Natural Resources

Water Quality Results Summary	Total Project Drainage Basin Area (ac)	Grass Swales	Filter Strips	Wet Detention Ponds	Catch- basins	Street Cleaning	Biofilters	Other Devices	Untreated Areas
Drainage Area (ac)	291.0	9.1	23.9	0	0	0	0	228.0	30.0
ROW Drainage Area (ac)	37.0	9.1	23.9	0	0	0	0	0	4.0
TSS Load, No Controls (lbs)	8841	3501	3878	0	0	0	0	1430	31.5
TSS Load, With Controls (lbs)	192.6	72.3	88.8	0	0	0	0	0	31.5
TSS Load Removed (lbs)	8648	3429	3790	0	0	0	0	1430	0
TP Load, No Controls (lbs)	72.7	6.4	10.1	0	0	0	0	55.0	1.2
TP Load, With Controls (lbs)	9.2	3.0	5.0	0	0	0	0	0.0	1.2
TP Load Removed (lbs)	63.5	3.4	5.1	0	0	0	Strand 0	and Associates 55.0	0
Percent TSS Reduction by Load	97.8%								
Percent TP Reduction by Load	87.3%								

TMDL Implementation for Wisconsin DOT

Questions?

AnnMarieE.Kirsch@dot.wi.gov