Aquatic Organism Passage Design: Four Years of Experience with HEC26

By: Roger Kilgore, Kilgore Consulting and Management
 Scott Hogan, FHWA Resource Center
 Bart Bergendahl, Federal Lands Highway Division, FHWA

National Hydraulic Engineering Conference

August 19-22, 2014

Iowa City, IA

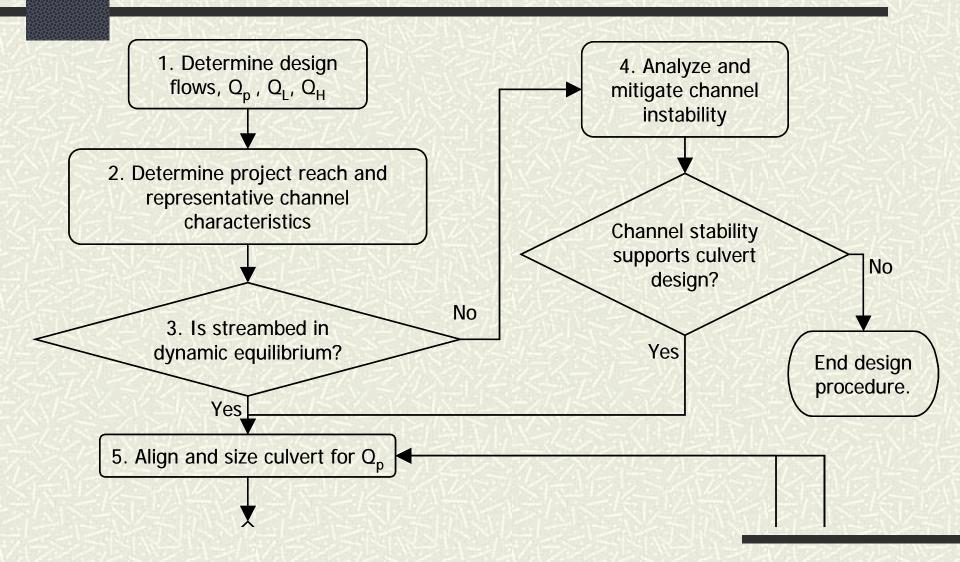
FHWA HEC 26 Stream Simulation Approach

- Goal: create conditions within the stream crossing similar to those in the natural channel in both bed structure and function (stream simulation)
- Presumption (proxy): bed material experiences same forces as aquatic organisms (AO). If bed behavior is similar in crossing and stream, AO that pass stream can pass crossing.
- # Applicability: use where no other approach is already accepted or for comparison.

Culvert Design for Aquatic Organism Passage using HEC 26

Background

- Diverse AO behaviors and capabilities require surrogate design parameters
- Some methods use channel dimensional characteristics
- Problems with dimensional characteristics as surrogate, e.g. bankfull width
 - Difficult to identify
 - Highly variable in space and time
 - No direct relationship to AOP
 - Assumes dynamic equilibrium


Culvert Design for Aquatic Organism Passage using HEC 26

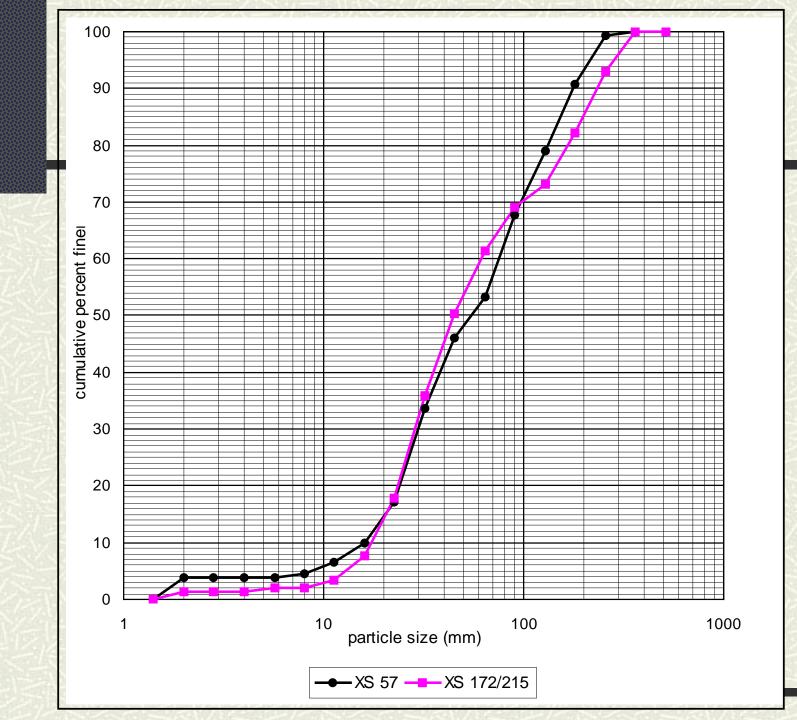
- Solution: Use AOP hydrology and sediment mobility characteristics
- Hypothesis: Organisms are exposed to similar hydraulic forces and stresses as the sediments comprising the streambed.
- Advantages of sediment mobility characteristics as surrogate
 - Sediment characteristics are relatively fixed, easy to identify
 - No knowledge of AO behaviors or capabilities required

Fundamental Tests in Design Procedure

- Does culvert satisfy peak flow, Q_P requirements?
- **#** Is bed material stable or in equilibrium for high passage flow, $Q_{\rm H}$?
- **#** Is bed stable/protected at peak flow.
- **#** Is velocity acceptable compared to stream?
- **#** Is depth acceptable compared to stream?

Project Setup and Initial Design Steps

Step 1. Determine design flows: Q_P, Q_H, Q_L


Peak discharge, Q_P. Based on pertinent high flow criteria. \blacksquare High passage discharge, $Q_{\rm H}$. Site-specific guidelines ■ 10% exceedance on annual flow duration curve ■ 0.25 of Q₂ \blacksquare Low passage discharge, Q_{I} . Site-specific guidelines 90% exceedance on annual flow duration curve

- or 7Q2.
- 1 ft³/s minimum

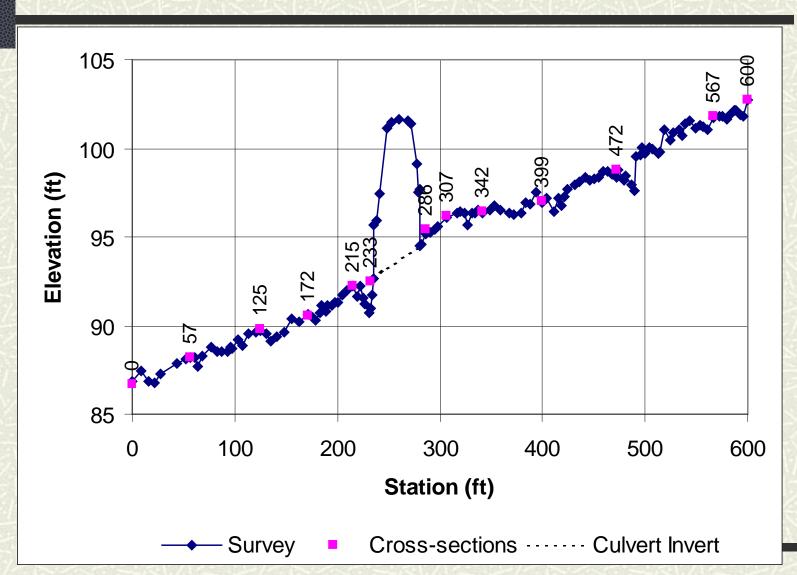
Step 2. Determine Project Reach and Characteristics

Reach length upstream and downstream:
Three culvert lengths (3 x 46 = 138 ft)
200 ft
Cross sections:
Minimum of 3 upstream and 3 downstream

- **#** Bed material:
 - Pebble counts

Steps 3 and 4. Dynamic Equilibrium/ Stream Stability

Step 3. Check for dynamic equilibrium.

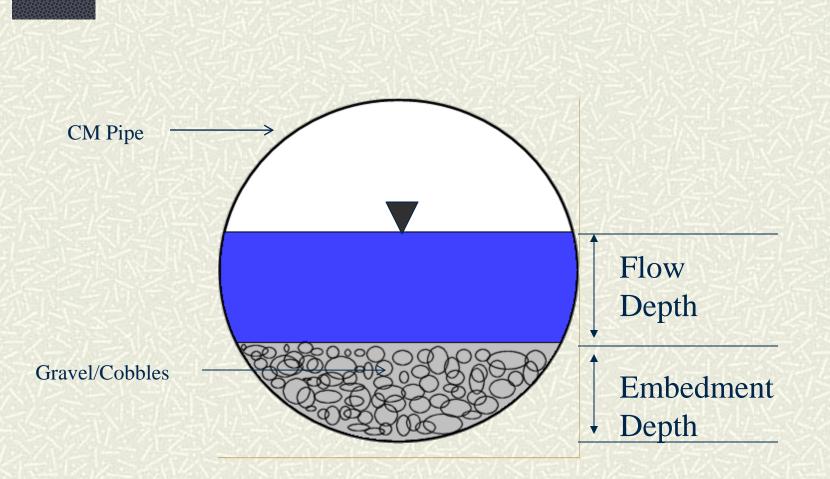

- Look for indicators of instability at site
- Stream type >> characteristics, processes, and tendencies
- Watershed character >> sediment supply
- Step 4. Analyze and mitigate channel instability.
 - If mitigation was necessary, other tools beyond HEC 26 are required.

Step 5. Align and Size Culvert for Q_P

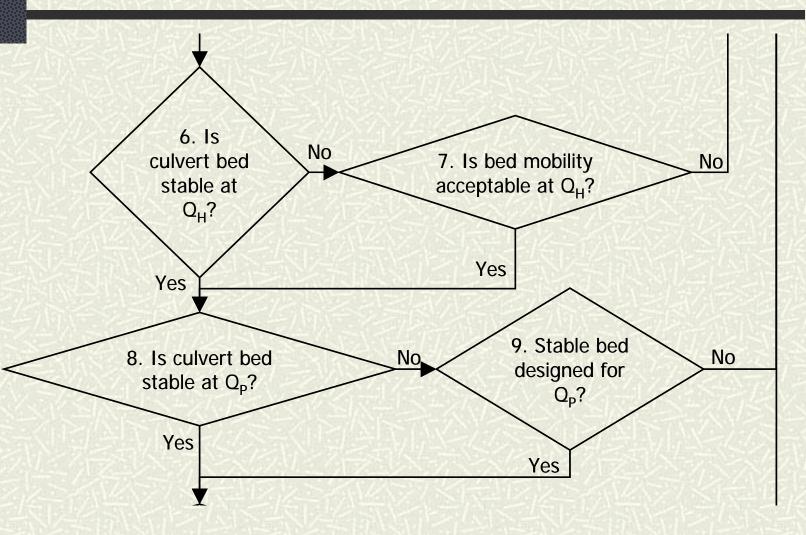
Determine hydraulic design criteria: HW/D

- Maximum headwater
- Overtopping allowed?
- **#** Vertical alignment
- **#** Horizontal alignment
- **#** Degree of Embedment
- **#** Bed material and roughness estimates

Example profile of project reach



Step 5. (continued) Bed Material and Embedment


Select bed material: Prefer to use native material \square D₅ no greater than 2 mm **#** Embedment for circular pipe is largest of: ■ 30% of pipe diameter • 2 times D_{95} ■ 2 ft **#** Embedment for box culvert is largest of: ■ 20% of rise \blacksquare 1 times D₉₅

■ 2 ft

Bed Material and Embedment

Shear Stress and Bed Mobility

Permissible Shear Stress

Computing Permissible Shear With Shields' Parameter and natural bed material gradation

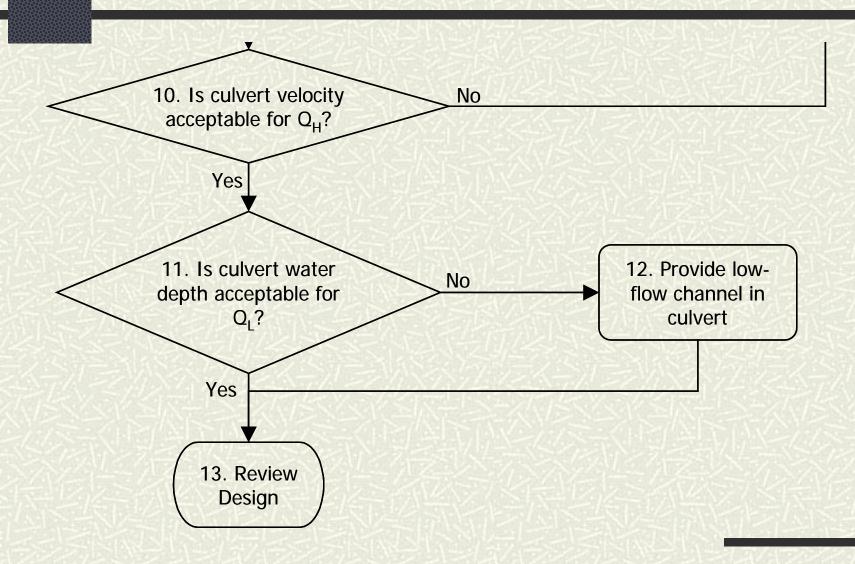
$$\tau_p = F * (\gamma_s - \gamma) D_{84}^{0.3} D_{50}^{0.7}$$

where: $F^* =$ Shields' parameter $\gamma_s =$ unit weight of sediment $D_x =$ % particles smaller by weight

Applied Shear Stress

Applied Shear

$$\tau_d = \gamma \, \mathbf{y} \, \mathbf{S}_{\mathbf{e}}$$


where: γ = unit weight of water (62.4 lbs/ft³) y = depth of flow (ft) S_e = energy slope (ft/ft)

Armored Sublayer

Stable sublayer in culvert at Q_P
Ensures alluvial bed at all lesser flows
Promotes replenishment of natural alluvium
Maintains channel roughness
Helps maintain natural channel profile

Bed design becomes a 2-layer system
Oversized (armored) sublayer
Surface layer of natural alluvium

Velocity/Depth and Final Design Checks

Step 10. Check Culvert Velocities at Q_H

Cross- Section	Applicable Length (ft)	Velocity at QH (ft/s)
US XS6	40	3.60
US XS3	40	2.21
US XS1	40	2.42
DS XS2	34	2.31
DS XS5	40	2.54
DS XS7	40	2.445

Consider applicable length with velocity.
Are culvert values less than or equal to the most challenging conditions in the stream?

Step 11. Check Culvert Depths at Q_L

Cross- Section	Applicable Length (ft)	Depth at Q _L (ft)
US XS6	40	0.29
US XS3	40	0.46
US XS1	40	0.34
DS XS2	34	0.37
DS XS5	40	0.27
DS XS7	40	0.13

Consider applicable length with depth.
 Are culvert values greater than or equal to the most shallow conditions in the stream?

Step 12: Design Low Flow Channel

- If depths in step 11 are too shallow (as they will be in most cases):
 - Provide a continuous low-flow channel through surface alluvium along culvert length
 - Depth > at least one natural channel flow depth
 - Limit side slope steepness of channel to 5H:1V
- Natural stream processes will alter low flow channel as they do in the upstream and downstream reaches.

Step 13. Review Design

- Analyze/evaluate alternative shapes (box, arch, ellipse) and materials against:
 - Excavation volume
 - Site disturbance
 - Installation cost
 - Material cost
 - Cover
 - Constructability
 - Service life
 - Open-bottom design?

Lamoille Canyon, NV

Existing: 6' CMP
AOP Design: 14' x 8.6' CM pipe arch embed. 3.3 ft
Constructed 2010

Slate Creek, WY

Existing: 64" x 43" arch
AOP Design 14' x 8'7" pipe arch
Constructed 2010

E. Fork Jemez River (NM)

Existing: Dual 12ft CMP AOP Design (2009): Dual 13 ft CMP or 28 ft span pipe arch

Lessons Learned

Tools for development of Q_H and Q_L needed
 Sublayer required (may be extended up and downstream)

- **#** Typical drivers
 - Bed stability for Q_P
 - Velocity
- **#** Increases size over conventional design
- Reduces maintenance, e.g. less debris capture (multiple barrels should be avoided)

Design flows: High Passage, Q_H

\blacksquare High passage discharge, $Q_{\rm H}$ Site-specific guidelines ■ 10% exceedance on annual flow duration curve ■ 0.25 of Q₂ Lamoille Canyon (NV) ■ Slate Creek (WY) • E. Fork Jemez River (NM) **#** Research/development need for flow duration curves and site-specific guidelines

Design flows: Low Passage, Q_L

\blacksquare Low passage discharge, Q_L

- Site-specific guidelines
- 90% exceedance on annual flow duration curve or 7Q2.
- 1 ft³/s minimum
 - Lamoille Canyon (NV)
 - Slate Creek (WY)
 - E. Fork Jemez River (NM)

Research/development need for flow duration curves, 7Q2, and site-specific guidelines

Armored Sublayer

 All three designs included armored sublayer for Q_p design flow
 May be extended beyond culvert

Native bed material

Armored sublayer

Culvert Size Drivers

Bed stability for Q_p $\tau_p = F * (\gamma_s - \gamma) D_{84}^{0.3} D_{50}^{0.7}$ • Lamoille Canyon (NV) • Slate Creek (WY) • E. Fork Jemez River (NM)

Velocity at Q_H
 Lamoille Canyon(NV)

Cross- Section	Applicable Length (ft)	Velocity at QH (ft/s)
US XS6	40	3.60
US XS3	40	2.21
US XS1	40	2.42
DS XS2	34	2.31
DS XS5	40	2.54
DS XS7	40	2.445

Increased Sizes over Conventional Design

Site	Existing	AOP Design
Lamoille Canyon (NV)	6-ft CMP	14' x 8'6" pipe arch
Slate Creek (WY)	64"x43" pipe arch	14' x 8'6" pipe arch
E. Fork Jemez River (NM)	2 12-ft CMP	28' span pipe arch

Reduces Maintenance (result of larger size)

Summary

- HEC 26 provides a reproducible procedure based on sound analytical tools for designing culverts for AOP. Applications are increasing.
- Stream simulation AOP design methods use a proxy for aquatic organism behavior. For HEC 26 the proxy is bed stability with checks for velocity and depth. Size is larger than conventional design.
- Where other methods are adopted by agreement for AOP, those methods should be used. HEC 26 provides a tool set where one is needed or can be used as a check.