
TWO-DIMENSIONAL CAPABILITIES OF HEC-RAS

Kevin Denn, P.E. NHEC 2014

ACKNOWLEDGEMENTS

Gary Brunner, P.E., D.WRE Hydrologic Engineering Center (HEC)

- Development Impetus
- Computational Scheme
- 2D Area Connections
- 2D Boundaries
- Initial Conditions
- Current 2D Limitations

DEVELOPMENT IMPETUS

Dam and Levee Breaches

- USACE Mapping, Modeling, & Consequence Production Center
- USACE Risk Management Center

USACE Interra Build 2D Component HEC was Into HEC-RAS!

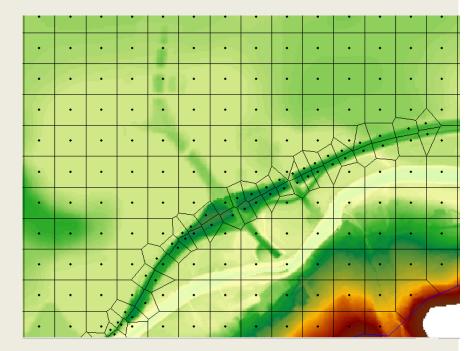
- Poor model stability
- Relatively long model run time

EXAMPLE APPLICATIONS

- Detailed 2D channel modeling
- Detailed 2D channel and floodplain modeling
- Combined 1D channels with 2D floodplain areas
- Subcritical and supercritical areas

- Development Impetus
- Computational Scheme
- 2D Area Connections
- 2D Boundaries
- Initial Conditions
- Current 2D Limitations

Equations

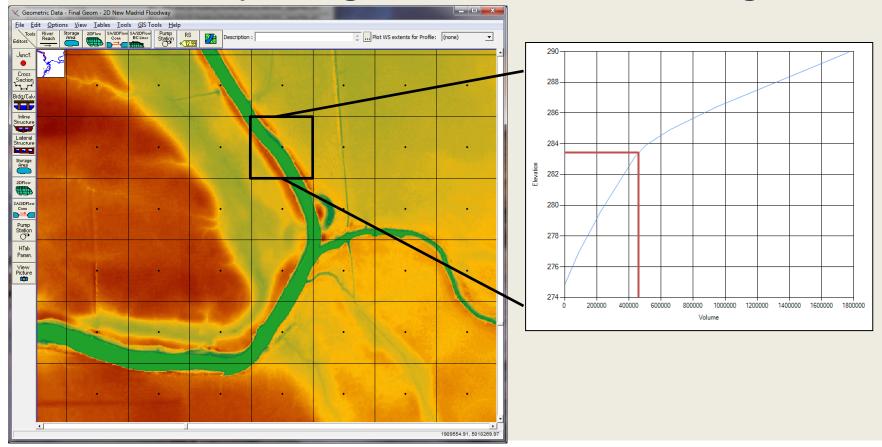

- Full 2D Saint Venant
- Diffusive Wave Approximation

Solutions

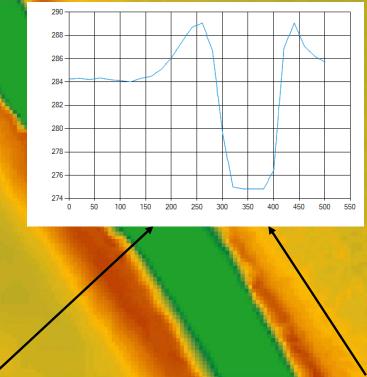
- Implicit Finite Volume
- Coupled 1D and 2D
- Computational Engine
 - 32-bit
 - 64-bit

Multiple Processors

- Mesh
 - Structured
 - Unstructured (3 to 8 sides)
 - Combination


Typical 2D Model:

- Center of element (single average elevation)
- Element boundary points (sloped element)


Masks detail of underlying terrain

Elevation-volume relationship is created for each cell (analogous to HEC-RAS storage areas)

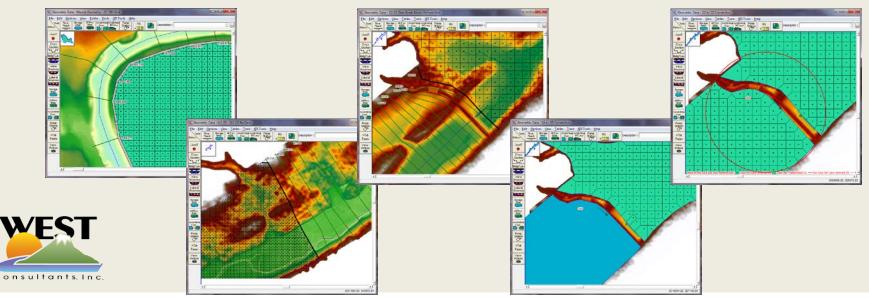
Elevation versus wetted perimeter, area, top width, roughness, etc. curves for each cell face
Similar to hydraulic property table computations in unsteady HEC-RAS

What Does This Mean?

- Cell can be 'partially wet'
 - More detailed results
- Potentially larger cell sizes can be used compared to models that solely use a node-based approach
 - Faster model run times

Does not mean you can use infinitely large cells

- Water surface slope
- Terrain changes and hydraulic controls



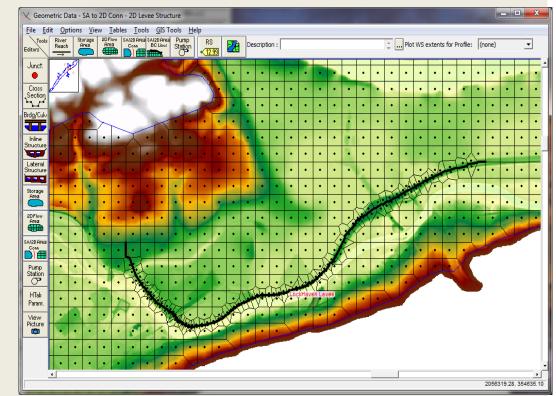
- Development Impetus
- Computational Scheme
- 2D Area Connections
- 2D Boundaries
- Initial Conditions
- Current 2D Limitations

2D AREA CONNECTIONS

- Connect with 1D Reach via Lateral Structure
- Connect with 1D Reach at U/S End of Reach
- Connect with 1D Reach at D/S End of Reach
- Connect with Storage Area via Inline Structure
- Connect with another 2D via Hydraulic Structure

- Development Impetus
- Computational Scheme
- 2D Area Connections
- 2D Boundaries
- Initial Conditions
- Current 2D Limitations

EXTERNAL BOUNDARIES


- Flow hydrograph
- Stage hydrograph
- Normal depth (at downstream end)
- Rating curve (at downstream end)

左	Unste	ady F	low Data -	1972 Flood	Event - SA to 2D Ru	in – 🗆 🗙							
File	Options	Help											
Bo	undary Cond	Apply Data											
					ndition Types								
	Stage Hydro	ograph	Flow H	Hydrograph	Stage/Flow Hydr.	Rating Curve							
	Normal D	epth	Lateral	Inflow Hydr.	Uniform Lateral Inflow	Groundwater Interflow							
	T.S. Gate Op	penings	Elev Cor	ntrolled Gates	Navigation Dams	IB Stage/Flow							
	Rules	;											
				Add Boundary C	ondition Location								
	Add RS .		Add Sto	rage Area	Add SA Connection	Add Pump Station							
	Select Location in table then select Boundary Condition Type												
	River Reach RS				Boundary Condition								
5	torage/2D	Flow A	reas	Boundary Condition	Joundary Condition								
1	BaldEagleO		ine: DS2Norma		Normal Depth								
	BaldEagleO		ine: DSNormal	Depth	Normal Depth								
3	Reservoir P	900			Lateral Inflow Hydr.								
	A Connectio				Boundary Condition								
_	Dam	JIIS			T.S. Gate Openings								
	Dam				nor oute openings								
I													

INTERNAL BOUNDARIES/STRUCTURES

- Ensure that the faces of the cells are oriented along the centerline of the boundary or structure
- Flow can be calculated using either weir equation or the 2D equation domain

- Development Impetus
- Computational Scheme
- 2D Area Connections
- 2D Boundaries
- Initial Conditions
- Current 2D Limitations

MODELING PROCEDURE: INITIAL CONDITIONS

DrySingle WSERestart File

Unsteady Flow Data - 1972 Flood Event - 2D to 2D Run 🛛 – 🗖 🛛 🗙												
File O	ptions H	lelp										
Bound	Boundary Conditions Initial Conditions Apply Data											
Initial Flow Distribution Method												
ΟU	lse a Resta	rt File	F	Filename:					_ ϴ			
Enter Initial flow distribution (Optional - leave blank to use boundary conditions)												
Δ	dd RS	1										
User specified fixed flows (Optional)												
	River		Reach	inter open	RS	Initial Flow						
1												
	Initial Eleva	tion of	Storage Ar	reas/2D F	low Areas (C	otional)	Import Min	SA Elevation(s)			
	Keep initial					2			<u> </u>			
	Storage Ar		low Area		1	Initial Elevation						
	BaldEagleC Upper 2D A					630						
21	opper 20 A	rea				030						

- Development Impetus
- Computational Scheme
- 2D Area Connections
- 2D Boundaries
- Initial Conditions
- Current 2D Limitations

CURRENT 2D LIMITATIONS

- Only one n-value for each 2D flow area.
- Limited computational mesh setup toolbox.
- Cannot have "dry" 1D cross sections when connecting directly to a 2D area.
- Cannot have varied WSEs as initial conditions.
- Cannot model pressure flow under bridges in 2D areas.
- Hydraulic property tables are more accurate with high-resolution elevation data (e.g., LiDAR). Without this data, larger grid sizes are not appropriate.

TAKEAWAYS

- Unique and Robust Approach to Incorporating Terrain Data in Computations
 - Elevation-Volume Relationship for Each Element
 - Hydraulic Parameters for Each Element Face
- Strong Ability to Model Coupled 1D and 2D Areas

www.TheRASSolution.com

Email: kdenn@westconsultants.com Phone: (503) 485-5490

