

RELOCATING A CHANNEL AND REPLACING TWO STRUCTURES ALONG A WESTERN PA HIGHWAY CORRIDOR

Rachel L. Tereska, MS, PE NTM Engineering, Inc.

SR 0422 Bridge Replacements

- Project background
- Existing
 - Bridges
 - Floodplain characteristics
 - Embankment erosion
- Proposed
 - Culvert
 - Channel relocation
- 2D model
 - Input
 - Results
- Conclusions

PROJECT BACKGROUND

Major PennDOT corridor in western PATransportation improvements

- Safety issues
- Structural deficiencies
- Flooding
- Erosion control
- Future maintenance

EXISTING BRIDGES & FLOODPLAIN

PROPOSED CULVERT & CHANNEL RELOCATION

PROPOSED CHANNEL TYPICAL SECTION

2D MODEL

• Complex hydraulic conditions

- Multiple opening hydraulic scenario during high flow events
- Curry Run reverses the flow direction in Bridge #2 during high flood events
- 90° bend upstream of Bridge #1
- 2D flow characteristics in the 100-year floodplain
- Proposed stream realignment

2D MODEL INPUT | GRID & BOUNDARIES

2D MODEL INPUT | EXISTING MATERIALS

2D MODEL INPUT | PROPOSED MATERIALS

2D MODEL INPUT | PROPOSED STRUCTURE

• Proposed twin cell

- 25'-5 ½" primary cell, depressesd 12" with 8" alternating baffles
- 25'-5 $\frac{1}{2}$ " overflow cell with 18" weir
- PA Type 10M Bridge Barrier

2D MODEL INPUT | PROPOSED STRUCTURE

• 2D layered flow constriction

• Assign % blockage and form loss coefficient (FLC) per layer

2D MODEL INPUT | PIER COEFFICIENT

• Interior vertical wall modeled as a pier

2D MODEL RESULTS | SUMMARY

• 50- and 100-year results:

- Backwater decreases
 - Average of 2 feet upstream of proposed twin cell
- Overtopping reduction
- Less erosion potential along SR 0422

• Reasons for improved hydraulic conditions

- Larger hydraulic opening of proposed culvert
 Existing 125 sf (combined) vs. Proposed 224 sf
- Improved stream alignment of Curry Run

100-YEAR RESULTS | EXISTING CONDITIONS

100-YEAR RESULTS | EXISTING CONDITIONS

100-YEAR RESULTS | PROPOSED CONDITIONS

100-YEAR RESULTS | PROPOSED CONDITIONS

CONCLUSIONS

• 2D Application

- Model multiple openings and overtopping
- Account for 2D flow direction in floodplain and split channel
- Reflect different confluence locations for the 50-year and 100-year events
- Incorporate the proposed stream realignment

• Results

- Accurately calculate hydraulic capacity of existing structures
- Determine required hydraulic opening of twin cell
- Quantify changes in flood elevations and velocities
- Evaluate risk and floodplain management criteria

INNOVATIVE TWO-DIMENSIONAL HYDRAULIC APPLICATIONS

QUESTIONS?

Rachel L. Tereska, MS, PE NTM Engineering, Inc.

2D MODEL INPUT | HYDRAULIC STRUCTURES

• Proposed twin cell

50-YEAR RESULTS | EXISTING CONDITIONS

50-YEAR RESULTS | PROPOSED CONDITIONS

