

Yellowstone River at Huntley, MT

Bridge Scour Countermeasure Failure Investigation

Russell Brewer, P.E.

- Total pier scour estimated at 18.2-feet
- Estimated Scour plots below the bottom of the footing elevations at piers 3, 6, and 7
- Footings "keyed" about 2-feet into Hard Blue Sandstone
- Structure placed on District Emergency Watch List (NBIS Item 113 Code 3)

EAST ELEVATION

9-23-1998 UW Inspection

What Happened? MDT Scour Team

- Implement POA due to CM Failure
- Review Available Data
- Request Additional Data
- Determine what led to CM Failure
 - Design Features
 - Construction Techniques
 - Hydraulic Forces
 - Other Factors

Determine Mechanisms of failure:

- Design Features
 - Review Plans

Determine Mechanisms of failure:

- > Design Features
 - Review Plans
- > Construction
 - Method of Construction
 - Review Placement of ACB's

Challenges

• Site access

 \bigcirc

- Water depth at low flow = 9-feet
- How to isolate the work area?

Contractors Solution

• Earthen Cofferdams

Excavate to Depth

0

ALLAND.

ACB Mattress "keyed" in around edges?

Place ACB Mattress

ACB Mattress anchored US and DS?

Block protrusion minimized?

Determine Mechanisms of failure:

- Design Features
 - Review Plans
- Construction Techniques
 - Review Methods of Construction
- Data Requested
 - Bathymetric Survey

Determine Mechanisms of failure:

- Design Features
 - Review Plans
- Construction Techniques
 - Review Methods of Construction
- Data Requested
 - Bathymetric Survey
- Hydraulic Forces
 - Flood Flow

≊USGS

Determine Mechanisms of failure:

- Design Features
 - Review Plans
- Construction Techniques
 - Review Methods of Construction
- Data Requested
 - Bathymetric Survey
- Hydraulic Forces
 - Flood Flow
 - Hydraulic Modeling

- P	TE DESIGN [Compatibility Mode] - Microsoft Excel																					
File	Hom	e In	sert P	Page Layout Form	nulas	Data	Review	Viev	v											۵ (?		r ×
	👗 Cut		Times I	New Roman 👻 12	- A A	= =		æ	📑 Wra	p Text	Number	-				÷	X		Σ AutoSum		¢۵.	
Paste	🖹 Сору	Ŧ			Δ. Δ.				Mar	ao ® Contor a	\$ - 0/ • *	.0 .00	Conditio	s 💷 💋	Cell	Insert	Delete F	ormat	🛃 Fill 🕆	Sort & F	ind &	
~	I Forma	at Painte	r 🕑 4	<u>o</u> , 1			-=		ivier	ge & center ·	φ 70 7 .(00 →.0	Formatti	ng ∗ as Table	 Styles 	*	*	- 4	2 Clear ▼	Filter * S	elect -	
						8		Alignm	ent	5	🖬 Number 🗔		Styles			Cells			Editing			
	L30		▼ (°	<i>f</i> ∗ =+L29/L	.28																	~
	A	В	С	D	E	F	G	I	H	I J	K		L	M	N	0	P	Q	R	S		
0				Drag Force $F_{-} = C^{*}(A7 + \alpha + \alpha + V)$																		
9			Lifting Force F				∠ ° p •	ωιγι														
10	Momentum Transfer Coefficient assumed to be 0.5 C					C																
11				width of pr	ojection	Ø																
12		Max	imum velo	city block may be ex	xposed to	V																
13			Momen	t resisting overturn	ting (M _R)	= W * cos	θ*(1/2) = Forc	e * Lengt	th												_
14	Moment c	ausing	verturnir	$ng(M_{OT}) = W * sin 6$	θ*(h/2)+	+ F _D * h +	F _L * (1/2	e) = Forc	e * Lengt	ĥ												_
15			Facto	r of Safety Against	Overturn	ing (FS) =	M _R /M	1 ₀														_
16						t	an ⁻¹ (S) :	= 0														
1/				Stretom	ofUnite	Fng																_
19				System	or critics	Ling																
20					Blog	ck Dimens	ions				Channel Prop	erties										
21				height of b	olock h =	0.63	ft		Slope of H	Energy Gradel	line or Channel Slope	=	0.0026	ft/ft								
22				length of	block 1 =	1.75	ft				Channel Velocity	7	13.5	ft/sec								_
23				width of b	olock w =	1.75	ft				ΔZ		0.1667	ft								_
24						2.0525	0.2				C		0.5000									_
25				Area of block exp	posea =	5.0025	112/022				FD F-		51.56	IDI								_
20			Submerg	ed upit weight of blo	ater $\gamma_W =$	104.61	10/105				rL W * h/) * sin (f	2)	0.2380	ft_lbf								_
28		Density of Water o =			1 94	slugs/	nft			Mo	·)	77 838	ft-lbf								_	
29			Dyr	namic Viscosity of W	Vater µ =	0.0000234	lbf*s/s	aft			MR		91.53	ft-lbf								
30					θ=	0.1490					FS		1.2									=
31				s	$\sin(\theta) =$	0.0026																
32				c	os (θ)=	1.000																
33									Flo	Flow depth and EGL slope are based on design flow data												
34									As	suming a perf	fect Installation											
35									Δ -	suming a proj	iecting block beight at	f	2.0	in								
37									AS	summing a proj	pecting block neight of		2.0									
38																						
39										ŀ	Assumin	ga	pr	oiect	ed h	oloc	k he	eigh	t of 2	2-in.		
40												8	. T	-JU				6				
41	Ye	How Cel	lls are inp	ut cells		e.,				_			•	-								
42	Dide Cens are calculated values USEX must verify.										l'he safet	tv	fact	or fo	r th	e A (СВ	mat	tress	; is 1	.2	_
44												- , -									_	
45																						
46																						
47																						
48																						
49					_					_		_	1.									
	DIS	CLAIMER	C / FS S	snear = gamma R S	СТВ	Factor of	Safety	/ Analys	is 🤇 💝			1					1111		III. 40004 (

Contractors Solution

- Earthen Cofferdams
- Excavate to Depth

Conclusion:

- > ACB Failure combination of factors.
 - Minimal Survey
 - ACB Elevations not specified
 - Plan Interpretation
 - Contractor
 - Construction PM
 - **Designer**
 - ACB's placed above channel thalweg.
 - Material beneath ACB mobile and likely washed away.
 - Experience

Initial Site Survey/Evaluation

- Better description of what is going on underwater.
- Aid in CM Selection process.
- Allow for more detailed hydraulic modeling
- Allow for better plan preparation

Design

- Define final elevations of countermeasures.
- Extend depth of mattress "key" to minimum of exposed Footing Height.

> Construction

- Technique and Experience
- Plan Interpretation
- Better communication
 - Construction Project manager
 - Design Engineer
 - Contractor.

