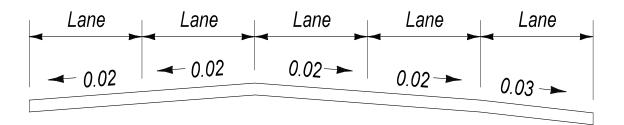
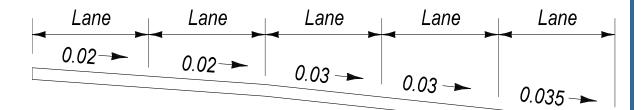

Analyzing Hydroplaning Potential on Wide Roadways

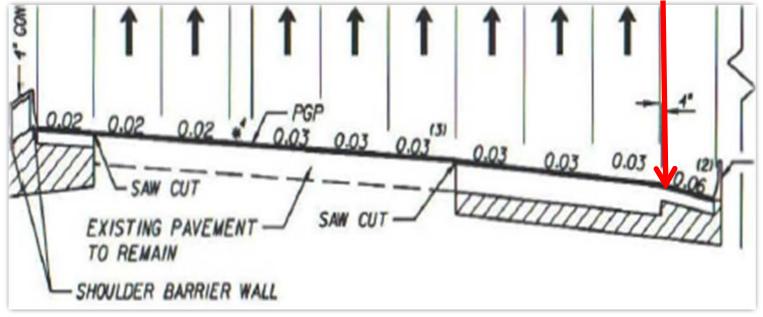



Catherine Earp, P.E. Rick Renna, P.E.

An Important Decision...

Hydroplaning Analysis Procedure

NEW Design Guidance


NEW Software Program

NEW PPM Typical Sections

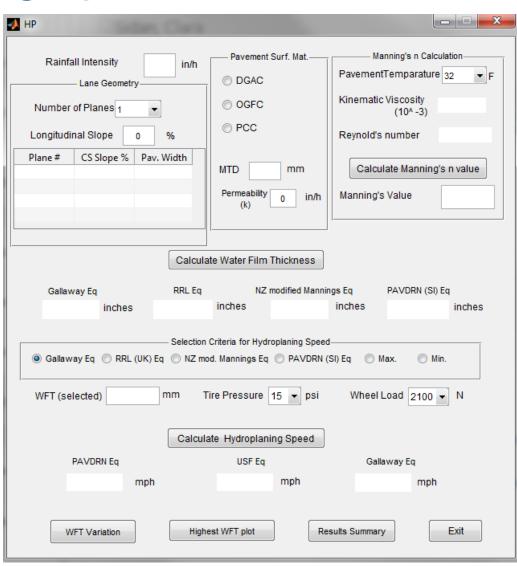
Currently...Design Variation

 Roadways exceeding the maximum allowable travel lanes with a cross slope in one direction

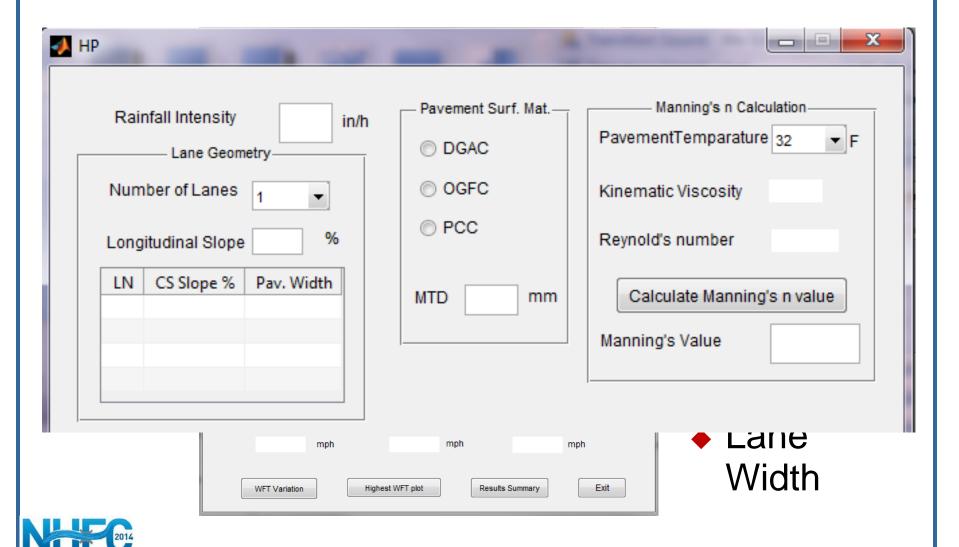
Elements of Hydroplaning Risk

Predicted
Hydroplaning
Speed

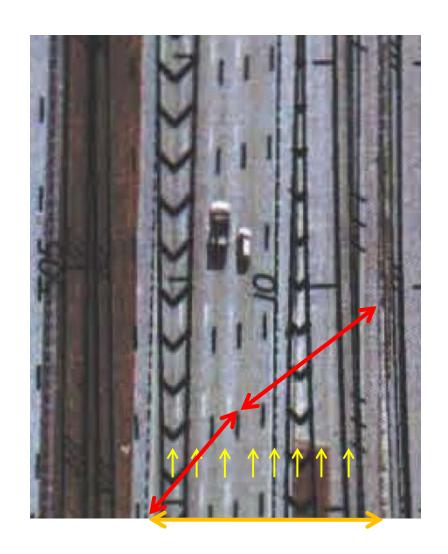
Expected
Driver
Speed


Rain
Pavement
Water Film Thickness

Design Speed Driver Reaction

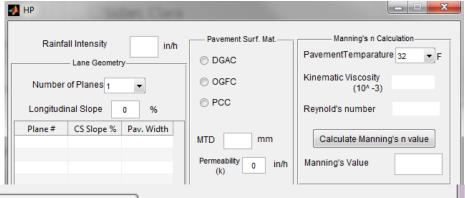

HP: Hydroplaning Speed Prediction Tool

- DOT & USF collaborated on Window-friendly program HP
- Predicts speed at which hydroplaning could occur.



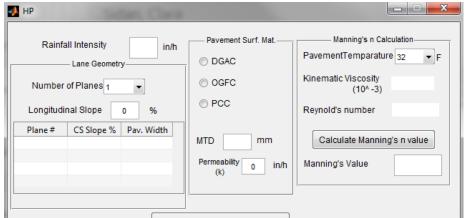
HP: User Defined Inputs

Longitudinal Slope


- WFT Increases Along Flow Path
- Greater upstream contributing area
- Increase S_L = Increase WFT

HP: Water Film Thickness

 Calculates the WFT using four different empirical formulas



Calculate Water Film Thickness								
Gallaway Eq		RRL Eq	NZ mo	dified Manings	Eq P	AVDRN (SI) E	q	
	inches		inches	i	inches		inches	
Selection Criteria for Hydroplaning Speed Gallaway Eq RRL (UK) Eq NZ mod. Manings Eq PAVDRN (SI) Eq Max. Min.								
WFT selected mm Tire Pressure psi Wheel Load N								

HP: Hydroplaning Speed

 Calculates the Hydroplaning Speed using three different empirical formulas

	Calculate Hydroplaning Speed	
PAVDRN (SI) Eq	USF	TxDOT Eq
mph	mph	mph
Highest WFT plot	WFT Variation Res	sults Summary Exit

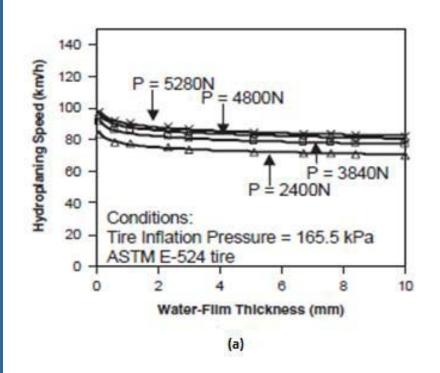
Which Equations Should I Use?

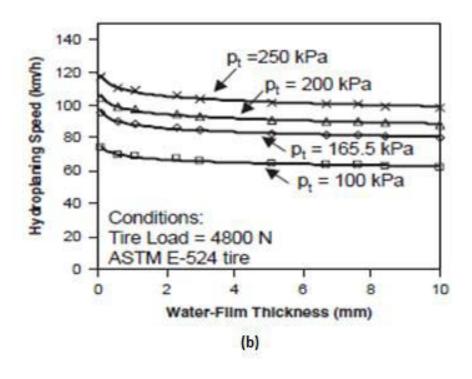
- USF Relative Accuracies with Relation to Florida's Wet Weather Crash Data
- Florida's 1,347 Miles of Interstate System
- CARS, PCS, GIS, VPD & Police Reports;
 2006-2011
- National Climactic Data Centre (NCDC)

WFT: Galloway Equation

Hydroplaning Speed: PAVDRN

Assumptions


- PAVDRN Developed Through Testing
- Empirically Derived Formula
- ASTM E-524 Standard Tire Testing
 - ✓ Tire Pressure = 24 psi
 - ✓ Wheel Load = 4800 N
- ◆ Tire Tread Depth = 3/32 inches (TWI = 2/32")



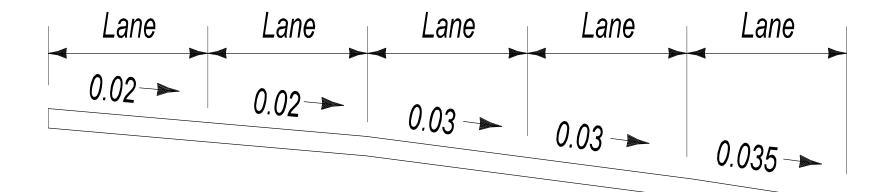
Hydroplaning Speeds Vary

Wheel Load

Tire Pressure

Analyzing the HP Results

- Gulf Coast University Evaluation of Driver Behavior to Hydroplaning in the State of Florida Using Drive Simulation
 - ✓ PatrolSim: Driving Simulator at UCF
 - ✓ Driver Age, Gender
 - ✓ Light rain (0.1-0.24in/hr) did not affect driver speed
 - √ Heavy rain (+0.24in/hr) reduced speed by 6-12mph


Predicted Driver Response

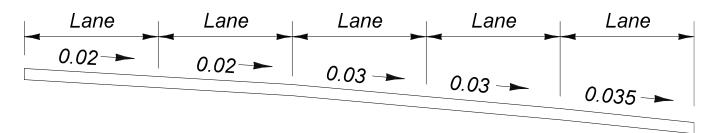
Intensity (in/hr)	Predicted Speed Reduction (mph)	Predicted Driver Speed (mph)					
0.1	0	Design Speed					
0.25	0	Design Speed					
0.5	6	Design Speed - 6					
1.0	8	Design Speed - 8					
2.0	12	Design Speed - 12					
3.0	below hydrop	olaning speed					
4.0	below hydrop	below hydroplaning speed					

Example

- Design Speed = 60mph
- Longitudinal Slope = 5%
- Open graded friction course

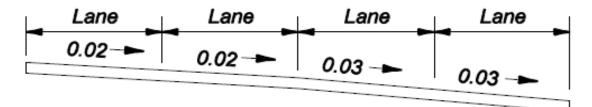
Potential Hydroplaning Speed: Example Design Speed = 60 mph

Cross Slope	0.02	0.02	0.02	0.03	0.03	0.035	Predicted
Rainfall Intensity i (in/hr)	Shoulder	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Driver Speed
0.10						100 (n/a)	60
0.25						100 (n/a)	60
0.50						100 (n/a)	54
1.00						70	52
2.00						54	48
3.00						48	45
4.00						52	45



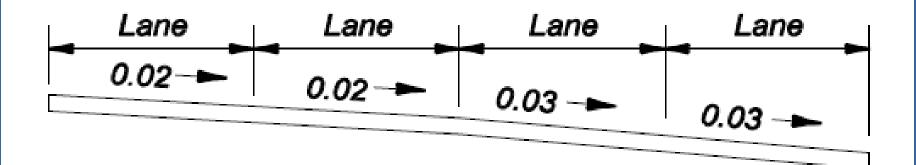
Potential Hydroplaning Speed: Example Design Speed = 70 mph

Cross Slope	0.02	0.02	0.02	0.03	0.03	0.035	Predicted
Rainfall Intensity i (in/hr)	Shoulder	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Driver Speed
0.10						100 (n/a)	70
0.25						100 (n/a)	70
0.50						100 (n/a)	64
1.00						70	62
2.00						54	58
3.00						48	45
4.00						52	45


Potential Hydroplaning Speed: Example Design Speed = 65 mph

Cross Slope	0.02	0.02	0.02	0.03	0.03	0.035	Predicted
Rainfall Intensity i (in/hr)	Shoulder	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Driver Speed
0.10						100 (n/a)	65
0.25						100 (n/a)	65
0.50						100 (n/a)	59
1.00						70	57
2.00						54	53
3.00						48	45
4.00						52	45

PPM Typical Section: Design Speed = 70 mph



Cross Slope	0.02	0.02	0.02	0.03	0.03	Predicted
Rainfall Intensity i (in/hr)	Shoulder	Lane 1	Lane 2	Lane 3	Lane 4	Driver Speed
0.10					100 (n/a)	70
0.25					100 (n/a)	70
0.50					100 (n/a)	64
1.00					73	62
2.00					55	58
3.00					49	45
4.00					52	45

PPM Typical Section Modification

Design Speed ≤ 65 MPH Longitudinal Slope ≤ 5%

Web Links:

Roadway Design Bulletin

http://www.dot.state.fl.us/rddesign/Bulletin/Default.shtm

Hydroplaning Tools

http://www.dot.state.fl.us/rddesign/Drainage/ManualsandHandbooks.shtm

QUESTIONS?

