Hydraulic Efficiencies for Colorado Department of Transportation Type C and D Median Inlets

Amanda L. Cox, Ph.D., P.E. Parks College of Engineering, Aviation and Technology Saint Louis University

National Hydraulic Engineering Conference 2014 August 21, 2014

PROJECT BACKGROUND

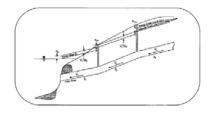
- Sump conditions arise in highway medians draining storm-water runoff from highway road surfaces into storm sewers
- Type C and D are the most commonly used inlets to collect storm runoff along highway medians
- Type C has a 35-inch by 35-inch opening area with steel bars
- Type D is two Type C grates together

Type C Inlet (Standard)

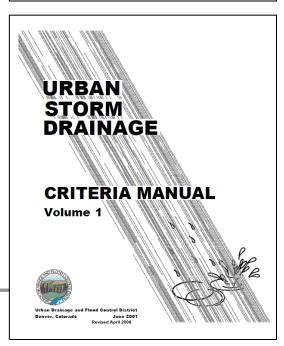
Type D Inlet (Closed Mesh)

PROJECT BACKGROUND

- Current design practices for computing hydraulic capacity of median inlets
 - Hydraulic Engineering Circular No. 22 (HEC-22) Urban Drainage Design Manual (Federal Highway Administration (FHWA, 2001))
 - Urban Storm Drainage Criteria Manual (UDFCD, 2008)
- Use classic orifice and weir equations to determine the hydraulic capacity of inlets in sump conditions
- Data specific to Type C and D inlets were not available to evaluate the accuracy of the classic orifice and weir equation method



Publication No. FHWA-NHI-10-009 September 2009 (Revised August 2013)


of Transportation Federal Highway Administration

Hydraulic Engineering Circular No. 22, Third Edition

URBAN DRAINAGE DESIGN MANUAL

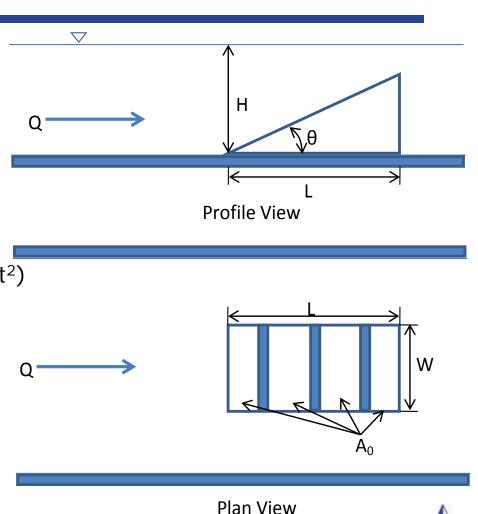
PROJECT BACKGROUND

- Inclined grates were theorized to minimize effects of debris on inlet capacity
- Physical data not available for verification
- The objectives of this study were to:
 - Use a scaled hydraulic physical model to evaluate the accuracy of current design methods to predict the hydraulic capacity of Type C and D inlets
 - Develop design equations to predict discharge conveyance
 - Assess debris behavior with inclined inlets

30 degree

CURRENT PRACTICE – HEC-22 AND **UDFCD MANUAL**

- Hydraulic capacity $Q = \min(Q_a, Q_w)$
- Classic orifice equation (cfs)

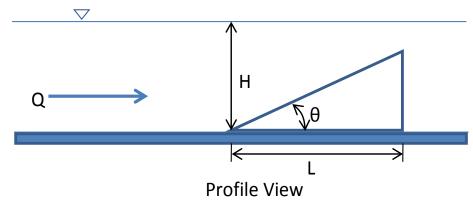

$$Q_o = C_o A_o \sqrt{2gd}$$

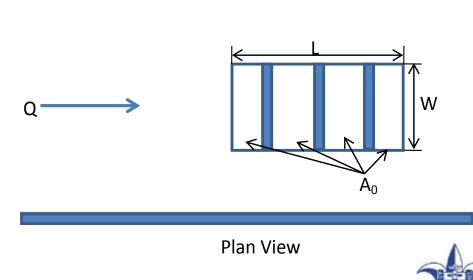
$$- C_o = 0.67$$

- $A_0 =$ Inlet clear opening area (ft²)
- d = Flow depth (ft)
- g = gravitational acceleration (ft/s²)
- Classic weir equation (cfs)

$$Q_w = C_w P d^{1.2}$$

- C_{W} is 3.00
- P = Weir perimeter (ft)





INCLINED GRATES

- Zlatkin (2008) UC Denver Technical Paper
- Similar approach of $Q = \min(Q_o, Q_w)$
- With orifice and weir equations were modified for grate inclination
- Further divided by a condition of submergence
 - Defined as a flow depth above the topmost elevation of the inclined grate $(d > d_b)$

ZLATKIN (2008) – UC DENVER TECHNICAL PAPER

- Orifice Flow
 - Unsubmerged

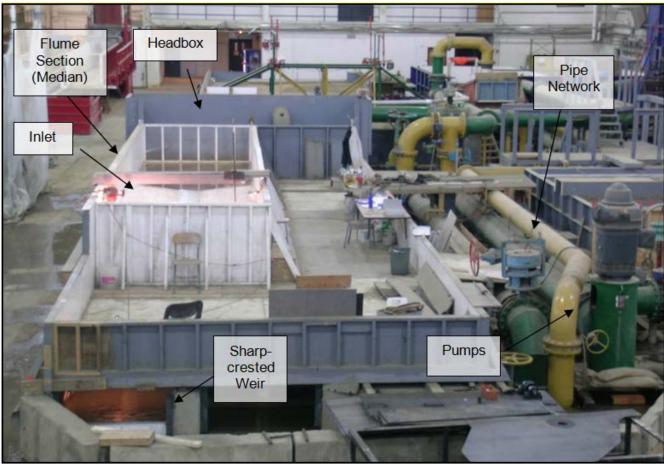
$$Q_{o,unsubmerged} = \frac{2}{3}C_d nWd \frac{\cos\theta}{\sin\theta}\sqrt{2gd}$$

– Submerged Q

$$Q_{o,submerged} = \frac{2}{3} C_d n W \cos \theta \frac{L}{d_b} \sqrt{2g} \left[d^{1.5} - (d - d_b)^{1.5} \right]$$

Weir Flow

- Unsubmerged
$$Q_{w,unsubmerged} = \frac{2}{3}C_d\sqrt{2g}(W-0.2d)d^{1.5} + \frac{8}{15}C_d\sqrt{2g}\tan(90-\theta)d^{2.5}$$


- Submerged
$$Q_{w,submerged} = \frac{2}{3}C_d\sqrt{2g}(W-0.2d)d^{1.5} + \frac{8}{15}C_d\sqrt{2g}\cot(\theta)\left[d^{2.5}-(d-d_b)^{2.5}\right]$$

 Theoretically based but not verified with physical data

PHYSICAL HYDRAULIC MODELING

- Provide data for evaluation of median-inlet hydraulic conditions
- 3:1 Froude-scale physical model
- Located at the Hydraulics Laboratory at Colorado State University's Engineering Research Center

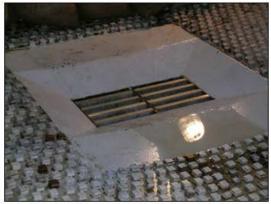
PHYSICAL HYDRAULIC MODELING

- 10% median side slopes
- 1.35% longitudinal slope towards the sump
- Bottom channel width of 2.7 ft
- Roughness provided by square wooden blocks
 - calibrated to achieve Manning's *n* of 0.031 model (0.037 prototype)
- Model "concrete pad" roughness of 0.013 (0.016)

HYDRAULIC-MODEL CONFIGURATIONS SIX GRATE CONFIGURATIONS EVALUATED

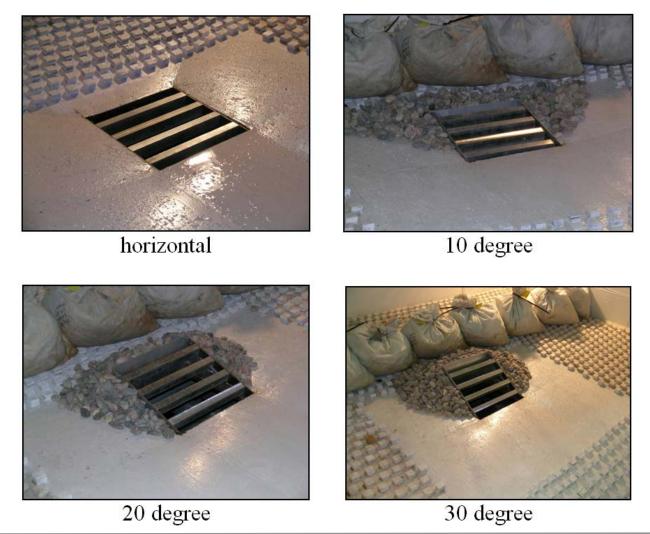
Type C Inlet On-grade

Type C Inlet Depressed


Type D Inlet On-grade

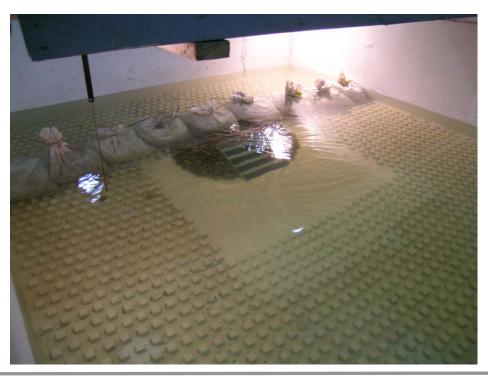
Type D Inlet Depressed

Type D Inlet Rotated



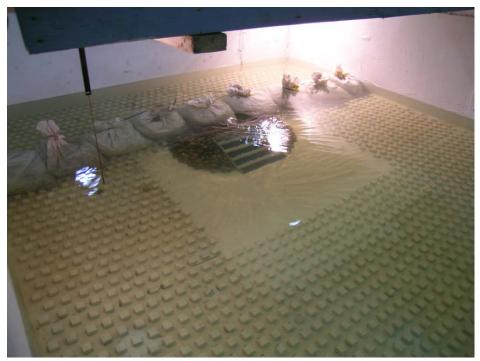
Type D Rotated and Depressed

HYDRAULIC-MODEL CONFIGURATIONS FOUR GRATE ANGLES (SHOWN ON TYPE C INLET)



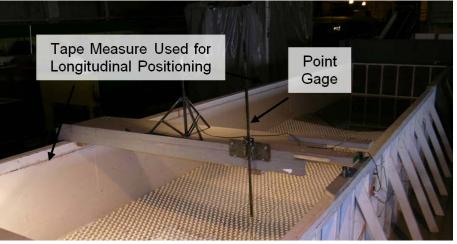
PHYSICAL MODELING

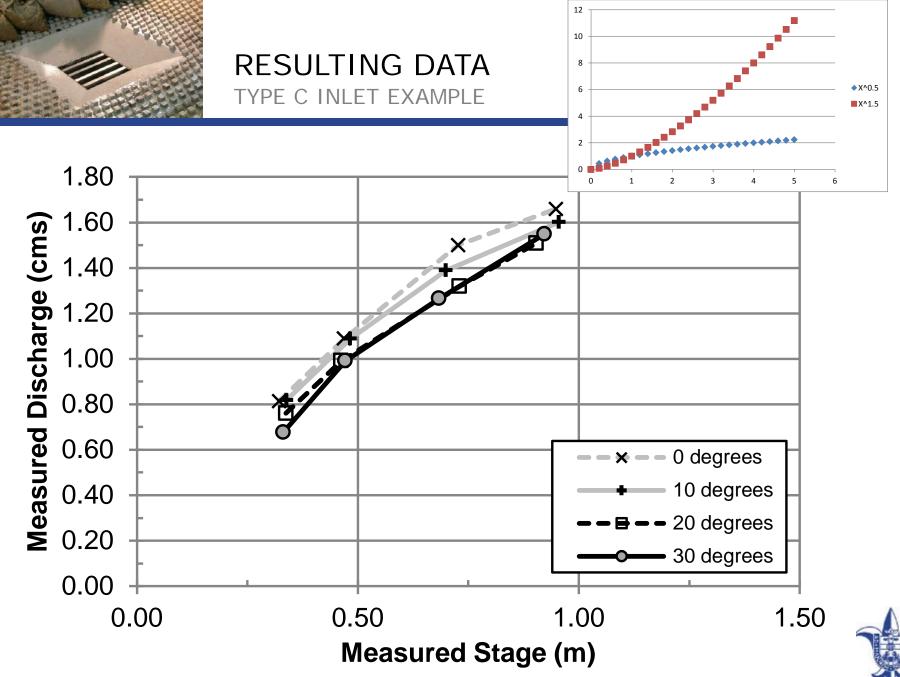
- 96 tests total from variations of inlet configurations, grate angles, and flow depths
- Prototype flow depths ranged from 1.00 to 4.13 ft
- Prototype discharges ranged from 17 to 120 cfs



TEST PROCEDURES

- Main objective
 - to obtain stage-discharge data for steady-state flow conditions



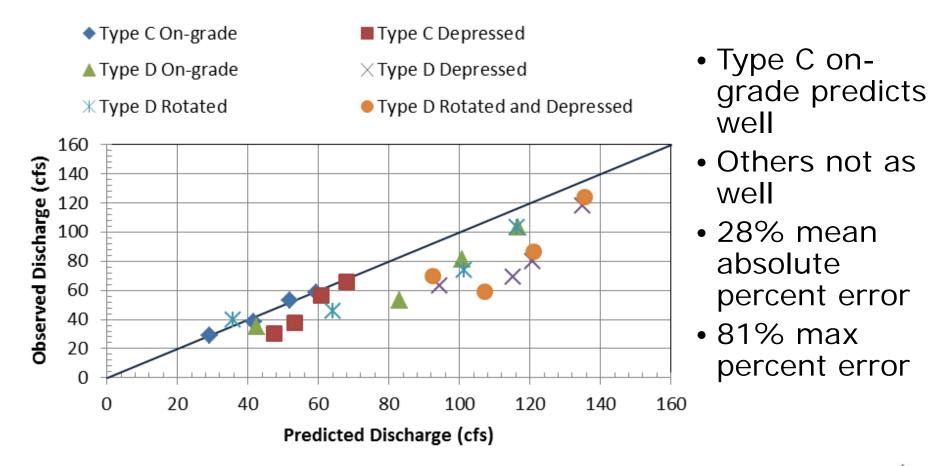


TEST PROCEDURES

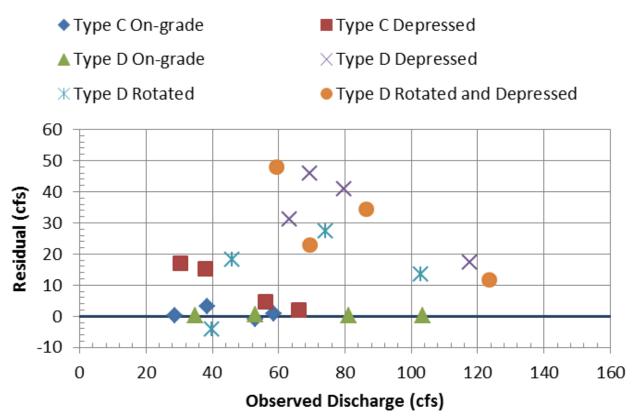
- Inflow measured with a full-bore electro-magnetic flow meter
- Outflow measured with a rectangular sharp-crested weir
- Flow depths measured at two locations
 - Both lateral to the front edge of the grate at the flume walls
 - Measured using a point gage
 - Chosen to be free of surface curvature from flow being drawn into the inlets

NHEC 2014: Hydraulic Efficiencies for CDOT Type C and D Median Inlets

SAINT LOUIS


- Predicted discharges were computed using HEC-22 and the UDFCD (2008) method
 - Orifice discharge coefficient (C_o) of 0.67
 - Weir discharge coefficient
 (C_w) of 3.00
 - Recorded stage readings

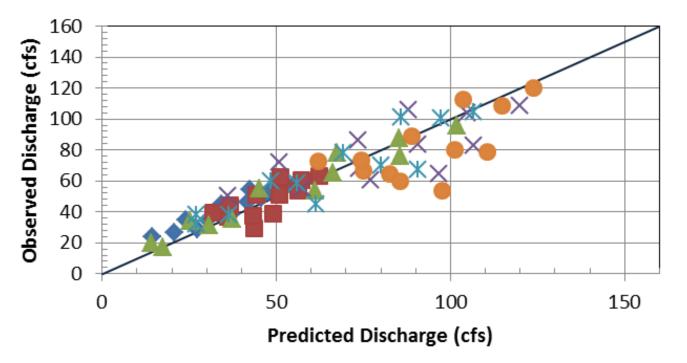
$$Q_o = C_o A_o \sqrt{2gd}$$
$$Q_w = C_w P d^{1.5}$$



- Generally over predicted observed discharges
- Max error ~50 cfs
- Over predicted discharge by an average of 28%

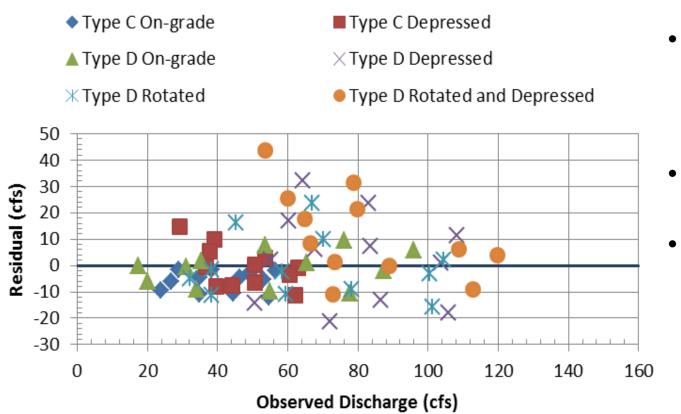
DATA ANALYSIS INCLINED-GRATE INLET CONFIGURATIONS

- Predicted discharges were computed using Zlatkin (2009) method
 - Discharge coefficient (C_d) of 0.65



DATA ANALYSIS INCLINED-GRATE INLET CONFIGURATIONS

- Type C On-grade
- ▲ Type D On-grade
- ✗ Type D Rotated

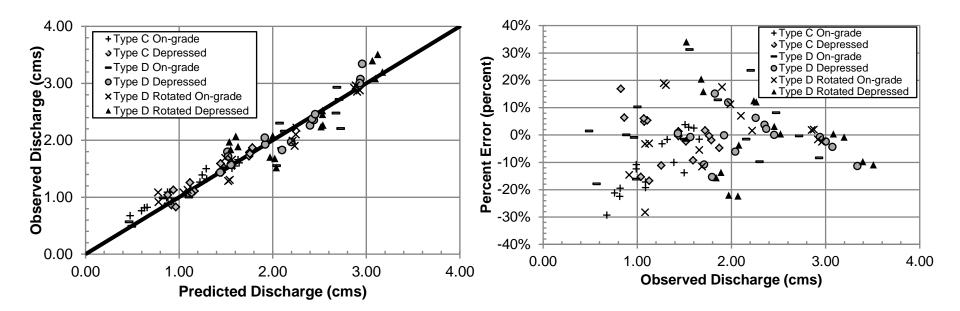

- Type C Depressed
- imesType D Depressed
- Type D Rotated and Depressed

- Predicts well for on-grade inlets
- Others not as well
- 16% mean absolute percent error
- 82% max percent error

- Errors nearly equally distributed above and below zero
- Max error ~45 cfs
- Over predicted discharge by an average of 0.5%

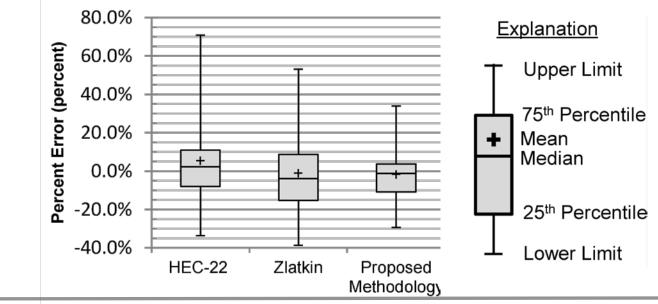
DESIGN EQUATION DEVELOPMENT

- First, calibrated discharge coefficients for exiting equations
- Majority of flows were classified as orifice flow
 - 67 orifice, 21 weir, and 8 transitional
- Evaluated several forms of orifice prediction equations
 - Classical dimensional analysis
 - Empirical regressions
- Empirical orifice flow regression equation
 - Coefficients determined using the least squares method


 $\begin{aligned} \mathbf{Q}_{0,\text{depressed}} &= 0.64 \text{nB}^{0.86} \text{L}^{0.76} \text{H}^{0.88} \\ Q_{0,on-grade} &= 0.54 nB^{0.82} L^{0.75} H^{0.93} \end{aligned}$

- Developed to be dimensionally homogeneous (independent of prototype scale)
- Grate-inlet angle not found to be statistically significant

 Coupled empirical orifice-flow equation with Zlatkin's weir flow equation for a new all-encompassing method



SUMMARY OF METHODS

Methodology	Mean Absolute Percent Errors		
	All	All Weir	All Orifice
HEC-22, Literature	42%	94%	37%
HEC-22, Fitted	13%	18%	13%
Zlatkin, Literature	18%	16%	19%
Zlatkin, Fitted	16%	16%	16%
Proposed Methodology	9%	14%	9%

SUMMARY

- Objective was to evaluate the hydraulic efficiencies of the CDOT Type C and D highway median storm drain inlets
- A 3:1 Froude-scale model of a highway median
- Model consisted of a constructed highway median channel with one interchangeable inlet
- 96 total hydraulic tests
- Variations in inlet configuration and grate angle
- Flow-depth and discharge data were collected

SUMMARY

- Measured stage-discharge data were compared to predicted discharges
 - HEC-22/UDFCD (2008) method
 - Zlatkin method for inclined grates
- Empirical regression equation developed to predict orifice-flow conveyance
- New design method proposed that couples empirical orifice-flow equation with Zlatkin weir-flow equation

ACKNOWLEDGEMENTS

- Contributing Authors
 - James Woidt
 - Former Masters Student Colorado State University
 - Ken MacKenzie
 - Denver Urban Drainage and Flood Control District
 - Dr. Chris Thornton
 - Director of CSU Hydraulics Lab Colorado State University
- Funding provided by:
 - Denver Urban Drainage and Flood Control District
 - Colorado Department of Transportation
- Other Acknowledgments
 - Dr. James Guo
 - University of Colorado, Denver
 - Brendan Comport
 - Former CSU Masters Student

HYDRAULIC EFFICIENCIES OF MEDIAN INLETS

Questions??

3:1 FROUDE SCALING

Geometry	Scale Ratios
Length, width, and depth (L_r)	3.00
All slopes	1.00
Kinematics	Scale Ratios
Velocity (V _r)	1.73
Discharge (Q_r)	15.6
Dynamics	Scale Ratios
Fluid density (ρ _r)	1.00
Manning's roughness (n _r)	1.20

3:1 FROUDE SCALING

Feature	Prototype Design	
Scale (prototype:model)	3:1	
Channel length (ft)	64	
Channel width (ft)	24	
Channel side slopes (%)	10	
Channel longitudinal slope (%)	1.35	
Approach section length (ft)	42	
Downstream back slope (%)	10	
Side slopes at inlet (%)	10	
Average Manning's roughness	0.037	
Surface material	1/8-in. steel plate	
Inflow control	butterfly valve / diffuser screen	
Inflow measurement	electro-magnetic flow meter	
Outflow measurement	weir / point gage	
Grate opening area – single grate (ft ²)	5.9	
Depth of flow (ft)	3	

