

2D Hydraulic and Scour Analysis for Bridge Replacement Rusty Jones, PE

Project Overview

Bridge over Missouri River along Route 47

- Original Bridge
 - 。 Built in 1934-36
 - $_{\circ}~$ 2 Lanes of traffic
- New Structure
 - $_{\circ}~$ Nine span bridge
 - $_{\circ}~$ 2555 feet long
 - $_{\circ}~$ 4 Lanes of traffic

Potential reasons to consider 2D Model

- HEC-18 states consider a 2D model "for bridges with complex flow characteristics..."
 - Embankments skewed to the flood flows
 - Multiple floodplain openings
 - Wide flood plains
 - Highly contracted flows
 - o etc
- Not necessary for all bridges

Hydraulic Model Setup

- TUFLOW Classic Model
- Includes entire floodplain
- Inflow Upstream/WSE downstream
- Elevations: Lidar, single/multi beam bathy
- 40ft square grid cells
- Piers represented as partially blocked cells
- Bridge deck not included (won't submerge)

Contraction Scour

 Can 1D model accurately represent how much water contracts under the bridge and how much goes over the roadway?

Local Scour Approach

- CSU Equation for channel piers
- FDOT Methodology for overbank piers
 - "...FDOT Methodology should be considered as an alternative, particularly for wide piers in shallow flows with fine bed material." – HEC18 5th Edition

Impact of Angle of Attack CSU Equation

$$\frac{y_s}{y_1} = 2.0 \text{ K}_1 \text{ K}_3 \text{ K}_3 \left(\frac{a}{y_1}\right)^{0.65} \text{ Fr}_1^{0.43}$$

Table 7.2. Correction Factor, K ₂ , for Angle of			
Attack, θ, of the Flow.			
Angle	L/a=4	L/a=8	L/a=12
0	1.0	1.0	1.0
15	1.5	2.0	2.5
30	2.0	2.75	3.5
45	2.3	3.3	4.3
90	2.5	3.9	5.0
Angle = skew angle of flow L = length of pier			

- Scour depth proportional to K₂
- At least <u>double</u> the scour if angle of attack > 30 degrees

Impact of Angle of Attack Florida DOT Methodology

 $a_{proj} = a\cos\theta + L\sin\theta$

 $a^* = K_{sf}a_{proj}$

where:

a = Effective pier width, ft (m)

- θ = Angle of attack in degrees
- L = Pier length, ft (m)
- K_{sf} = Shape factor (1.0 unless square nosed)

Scour depth is proportional to a*

If length > 4 width and 30 degree angle of attack, scour increases by a factor of 2.86

Hydraulic Model Results

- Flow split between channel and floodplain
- Channel piers Flows aligned with piers
- Overbank piers Flows skewed to piers

Summary

- 2D hydraulic models for scour analysis
 - Provide more accurate flows for contraction scour
 - Provide angle of attack
- 2D models not always necessary
- HEC-18 gives descriptions of when a 2D model may be more appropriate

