

New Directions in Scour Monitoring

The second s

Beatrice E. Hunt, P.E., AECOM

New Directions in Scour Bridge Scour Monitoring

- Guidance
- State-of-practice
- Research and new directions
- Conclusions

Research - NCHRP Report 396

Instrumentation for Measuring Scour at Bridge Piers and Abutments

1997

Practice Report - NCHRP Synthesis 396

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Monitoring Scour Critical Bridges

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Monitoring Scour Critical Bridges

2009

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_396.pdf A=COM

FHWA HEC-23 Guidance

September 2009 Publication No. FHWA-NHI-09-111

Hydraulic Engineering Circular No. 23

Bridge Scour and Stream Instability Countermeasures: Experience, Selection, and Design Guidance-Third Edition

Volume 1

Bridge Scour and Stream Instability Countermeasures

New Third Edition, 2009

http://www.fhwa.dot.gov/engineering/hydraulics/pubs/09111

2012 FHWA Guidance – Risk-Based Data-Driven Process

- FHWA Scour Program
- Risk-Based, Data-Driven Decision-Making

Scour critical bridges that present lesser risk may be considered candidates for a POA with only a monitoring countermeasure component

A bridge having **unknown foundations** and low level risk may have the required POA consist of a monitoring scour countermeasure

Bridge Fixed Scour Monitoring Systems

- Real time monitoring
- Remote
- Wireless
- Data loggers
- Web-based
- Automatic alerts
- SENSORS
- DATA ANALYSIS

Data Being Collected

- Streambed elevations
- Bridge movements
- Countermeasure parameters & performance
- Installation of countermeasures
- Water stage
- Velocity measurements
- Rainfall

Telemetry Options

Landline

Satellite

Cellular

Data Loggers

AECOM

Internet

Willis Avenue Bridge over the Harlem River / NYCDOT

AECOM

Powering the System

Commercial Power

Types of Fixed Scour Monitors – FHWA HEC-23 (2009)

Sonar

Tilt Sensor

Time Domain Reflectometer

Magnetic Sliding Collar

Sonar Scour Monitors

FHWA HEC-23

3-D Profiling Scanning Sonars

- Can observe wide areas of scour, 19,000 m²
- Useful for monitoring armoring countermeasures

Acoustic Measurements – Four Transducers

Acoustic Measurements – Four Transducers

Float-out Devices

TXDOT

Texas A&M

Tethered Buried Switches (TBS)

Wireless Smart Rocks

Fig. 2 Scour Countermeasure Monitoring

- Smart Rocks
 - Magnets or Sensors
 - Inside Rocks or Concrete
- Measurements
 - Maximum scour
 - Countermeasure performance
- Testing
 - Small-scale laboratory tests
 - Full-scale field tests
- Types
 - Passive
 - Semi-Active
 - Active

Missouri University of Science & Technology and FHWA

Wireless Smart Rocks

✓ Proof-of-Concept Tests – Field Condition

Gasconade River Bridge on 07/23/2013

Top-View Map of the five Smart Rock installed around the pier

The rocks form a network and are capable of communicating with each other (wake up and obtain RSSI data)

- Embedded sensors/electronics
- Wireless magneto-inductive communications
- Measure individual location changes

Radio Frequency Identification (RFID) Systems

The University of Iowa and Iowa State Unversity (January 2010)

Magnetic Sliding Collars

Time Domain Reflectometers

Whiskers - Bio-Inspired Scour Sensor Post

Scour Application

University of Maryland, Michigan Tech and FHWA

Photo of whiskers installed at the end of the in-air and in-water posts

University of Maryland, Michigan Tech and FHWA

Texas A&M

Caltrans

Motion Sensors / Accelerometers

TXDOT

Monitoring of 3 Bridges for Scour New York City Department of Transportation

	no scour	1ft	Bft	4ft
Frequency	14.16	14.09	13.99	13.86
	14.73	14.70	14.69	14.67
	15.58	15.55	15.52	15.48
	16.41	16.36	16.29	16.24
Modal ratio				
1 to 2	1.040	1.043	1.050	1.058
2 to 3	1.058	1.058	1.057	1.055
3 to 4	1.053	1.052	1.050	1.049
1 to 4	1.159	1.161	1.164	1.172

Mosholu Bridge (4th Vibrational Mode)

No Scour 16.41 Hz.

With Scour 16.19 Hz.

With 1ft Scour on Downstream Side of Pier #3 16.35 Hz.

Additional Studies

• Fiber Bragg Gratings (FBG) sensors – University of Illinois at Chicago (March 2011)

Bridge Scour Monitoring Technologies: Development of Evaluation and Selection Protocols for Application on River Bridges in Minnesota Minnesota Department of Transportation

RESEARCH SERVICES

Office of Policy Analysis, Research & Innovation

Jeff Marr, Principal Investigator St. Anthony Falls Laboratory University of Minnesota

March 2010

Research Project Final Report #2010-14

3D Mechanical Scan

AECOM

3D Volumetric Real Time Mapping

Acosta Bridge - Jacksonville, FL

Echoscope®

/Echoscope® John's Pass Bridge, Clearwater, FL

Echoscope[®]

Future Needs in Scour Monitoring Technology

- More robust devices increased reliability and longevity
- Decreased costs
- Simpler installation techniques
- Less maintenance and repairs
- Better long-term power
- Longer transmission distances and through various surfaces
- Underwater wireless transmission

Future Needs in Scour Monitoring Technology

- Simplification of data analysis
- Devices more suitable for smaller and larger bridges
- Combine scour monitors with devices that measure additional hydraulic variables, structural monitors or cameras
- Funding for the scour monitoring program postinstallation
- Data for scour research

Conclusions

- Scour monitoring may be used for lower risk scour critical and unknown foundation bridges
- Several monitors available for different bridges, site conditions and data requirements
- Developments in sensors and data analysis are most needed
- Proof of concept in laboratory and fields tests are ongoing
- Portable monitors complement fixed monitors

THE UNIVERSITY OF IOWA

Thank you!

beatrice.hunt@aecom.com

