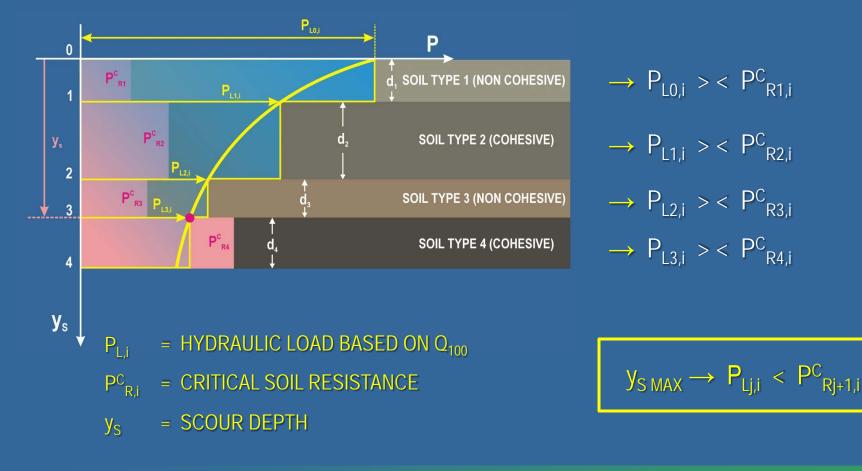


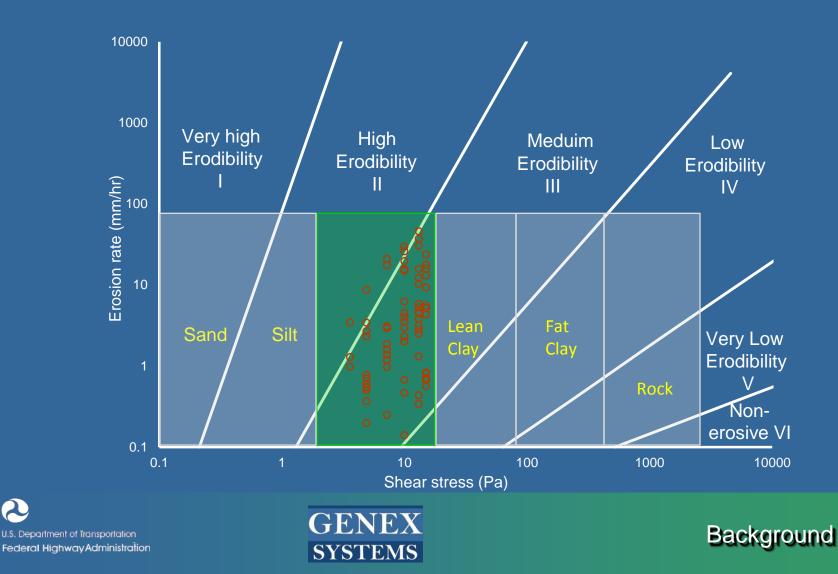
Scour in Cohesive Soils presented by Haoyin Shan and Kornel Kerenyi at the **National Hydraulics Engineering Conference** Thursday, August 21st, 2014 lowa City, IA

- Background
- Ex Situ Scour Testing Device
- Flow Condition: Log-law Velocity Profile
- Soil Preparation & Geotechnical Tests
- Erosion Results
- Conclusions



Scour in Cohesive Soils

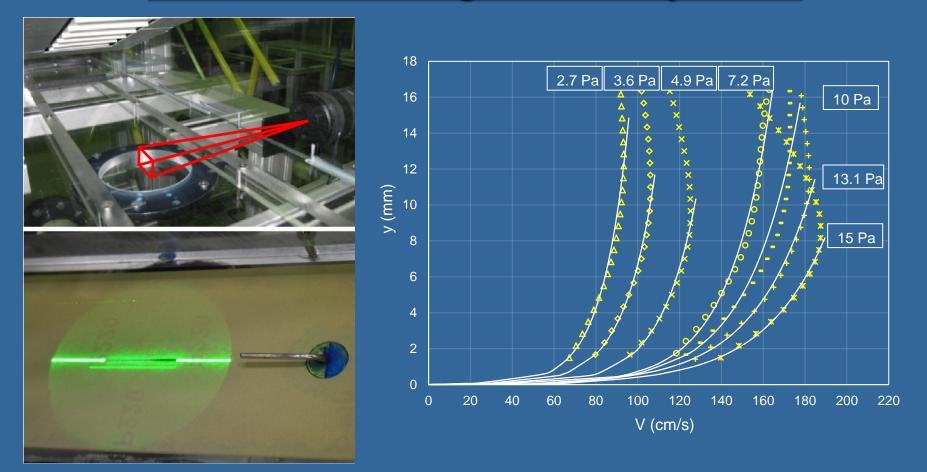
Hydraulic Loading Decay Function and Critical Soil Resistance


U.S. Department of Transportation Federal HighwayAdministration

Background

Background

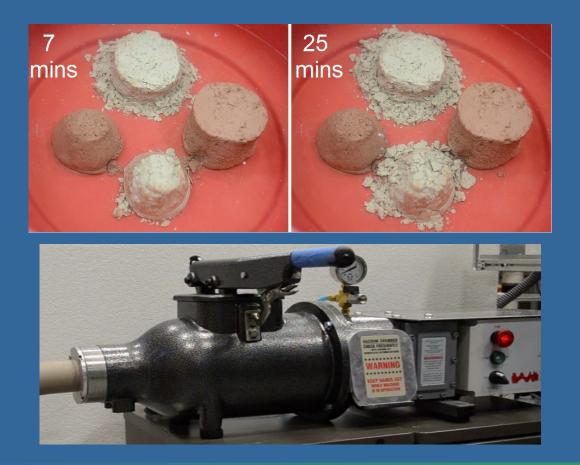
Ex situ Scour Testing Device


U.S. Department of Transportation Federal HighwayAdministration

Ex Situ Scour Testing Device

Flow Condition: Log-law Velocity Profile

U.S. Department of Transportation Federal Highway Administration



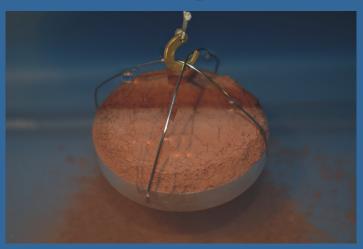
Flow Condition

Pugger Mixer: Preparing Slaking-free Soils

Soil Preparation

Tested Soil Characteristics

Index	Soil type	Materials (%)			SG	PL	LL	PI	F(<75 μm)	# of
		Clay	Silt	Sands		%	%	%	%	WC
1	CL-ML: sandy silty clay	20	40	40	2.69	16.7	21.0	4.3	60.6	3
2	CL: sandy lean clay	30	20	50	2.71	14.3	21.3	7.0	50.7	3
3	CL: sandy lean clay	40	10	50	2.73	14.4	21.1	6.7	50.7	2
4	CL-ML: Silty clay with sand	25	45	30	2.72	17.4	22.5	5.1	70.4	3
5	CL: Lean clay with sand	40	40	20	2.69	17.7	26.4	8.7	80.3	3
6	CL: Lean clay with sand	40	30	30	2.71	16.6	25.5	8.9	70.4	3



Soil Preparation

Geotechnical Tests

1. Slaking test

- WC, SG and bulk density
 Particle size distribution
 Atterberg limits
- 6. Direct shear

2. Unconfined compression test (q_u) / Field vane tester

www.humboldtmfg.com

U.S. Department of Transportation Federal Highway Administration

Geotechnical tests

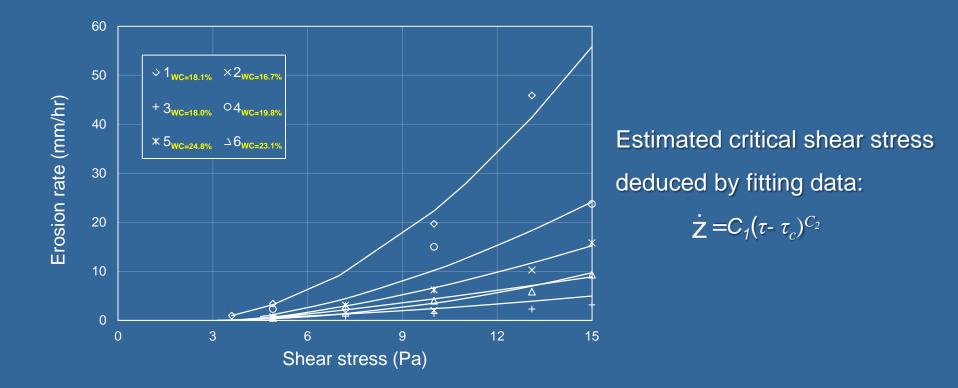
Soil Erosion Video

Soil 4_{WC=19.8%} CL-ML: silty clay 25% clay + 45% silt + 30% sands PI=5%, $q_u=1242$ lbf (59 KPa)

U.S. Department of Transportation Federal HighwayAdministration

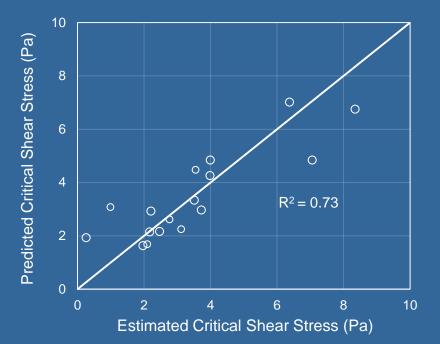
Erosion Curve of Tested Soils

Index	Soil type	Materials (%)			SG	PL SG	LL	PI	>75 µm	WC (%)	
		Clay	Silt	Sands		%	%	%	%		
1	CL-ML-sandy silty clay	20	40	40	2.69	16.7	21.0	4.3	39.4	3: 15.6, 16.5, 18.1	
2	CL-sandy lean clay	30	20	50	2.71	14.3	21.3	7.0	49.3	3: 14.7, 16.7 , 17.7	
3	CL-sandy lean clay	40	10	50	2.73	14.4	21.1	6.7	49.3	2: 16.0, 18.0	
4	CL-ML-Silty clay with sand	25	45	30	2.72	17.4	22.5	5.1	29.6	3: 18.9, 19.8 , 21.7	
5	CL-Lean clay with sand	40	40	20	2.69	17.7	26.4	8.7	19.7	3: 21.5, 23.1, 24.8	
6	CL-Lean clay with sand	40	30	30	2.71	16.6	25.5	8.9	29.6	3: 19.2, 20.0, 23.1	



Erosion Curve of Tested Soils

Erosion Results



Proposed Models for Critical Shear Stress

$$\tau_{\rm c} = \alpha_1 (\frac{W}{F})^{-2.0} {\rm Pl}^{1.3} {\rm q}_{\rm u}^{0.4}$$

For best fit, $\alpha_1 = 0.1$

U.S. Department of Transportation Federal Highway Administration

Ę.

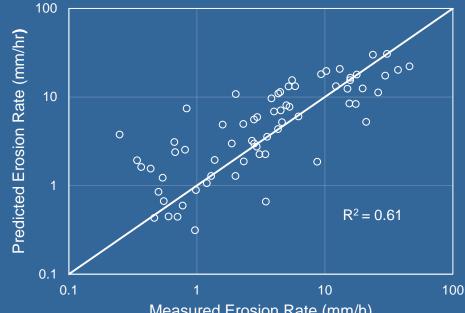
TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Proposed Models for Critical Shear Stress

$$\tau_{\rm c} = \alpha_1 (\frac{W}{F})^{-2.0} {\rm PI}^{1.3} {\rm q}_{\rm u}^{0.4}$$

For design, $\alpha_1 = 0.07$

* Straub, T., and Over, T. (2010). Pier and Contraction Scour Prediction in Cohesive Soils at Selected Bridges in Illinois. Research Report ICT-10-074.



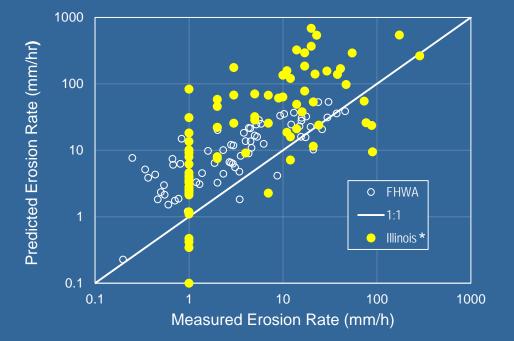
Proposed Models for Erosion Rate

$$\dot{z} = C_1 (\tau - \tau_c)^{1.8}$$
$$C_1 = \alpha_2 q_u^{-1.0} P I^{-1.1}$$
For best fit, $\alpha_2 = 680$

Measured Erosion Rate (mm/h)

U.S. Department of Transportation Federal Highway Administration

Ę.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Proposed Models for Erosion Rate

$$\dot{z} = C_1 (\tau - \tau_c)^{1.8}$$

$$C_1 = \alpha_2 q_u^{-1.0} P I^{-1.1}$$
For design, $\alpha_2 = 1100$

U.S. Department of Transportation Federal HighwayAdministration

Conclusions

- ESTD mimics erosion in open channel flows
- The shear sensor directly measure the shear stress
- Critical shear stress is formulated with soil properties
- Erosion rate is a function of soil properties and excess shear stress
- Slaking should be excluded from an erosion test

