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Problem Background 

■ Urban road preservation projects often require improvements to the pedestrian 
ramps in order to be ADA compliant. 

■ Existing storm drain catch basins are frequently located near the existing cross-
walks and may be impacted by the improvements. In some cases, the existing 
catch basin is in the pedestrian access route and the grate must be replaced with 
an ADA compliant grate.  

■ ADA compliant grates have a lower hydraulic capacity than the current standard 
MnDOT grates, but the exact capacity is unknown for on-grade locations. 
 

■ Problem: Determine ADA compliant grate hydraulic capacity 
 

■ Traditional flume testing of grate capacity uses conditions and geometry that do 
not correspond completely to full scale street conditions 

■ 3D CFD analysis of flow through grates can be done at full scale with a variety of 
specified geometry arrangements 

■ Many CFD tests can be run for varying geometry and conditions at relatively low 
cost. 
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ADA Compliant Grate and Vane Grate Used as a 
Basis for Comparison  
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CFD Approach to Determining Grate Performance 

■ Uses volume of fluid (VOF) physics model 
– Multiphase model (air and water) 
– Keeps track of free surface (including surface tension, etc.) 

■ Build geometry for grates, catch basin, and street in CAD software 
■ Generate an adequately refined computational mesh 
■ Solve partial differential equations (PDEs) governing flow as a boundary value 

problem that gives fraction of flow entering the catch basin as part of the solution 
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A Typical Extent of the Computational Domain in 
the CFD models – with space for air above 
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CFD Needs the Boundary Conditions (Upstream 
inlet velocity and street surface roughness height) 
■ Use HEC-22 (Urban Drainage Design Manual) equations (4-2 through 4-6 to get 

volume flow rate Q for street geometry and water spread) 
■ Then use inlet cross section area to get inlet velocity V from Q 
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Volume Flow for Compound Street and Gutter from 
       HEC-22 
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Cases 
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Additional Gutter Cross-slopes of 0.02 and 0.05 for both grates at 
longitudinal slope = 0.01 
 
Plus a few additional cases run to confirm trends 
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Parts based meshing used for street grate model 
provides a fine mesh at grate to improve accuracy 
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Putting the parts together to get the domain 
■ The grateWrapped, overGrate, and mainStreet parts are assigned to separate 

regions 
■ The regions are joined with in place interfaces 
■ The grateWrapped part has a zero thickness surface covering all of the holes 

– When joined to the overGrate surface with an in place interface, all of the holes are in 
one interface 

– no need to create an interface for each hole 

■ Creating interfaces in the overGrate region allows mass flow through the 
interfaces to be computed via field functions – including the upstream side, street 
side, downstream side, and flow through the grate holes 

■ When changing a part operation parameter, only that part needs to be remeshed 
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Refined grate surface = fine volume mesh at grate entry 
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Base size = 4 cm 
Target size grate = 10% 
Minimum size grate = 5% 
Points/circle = 72 
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Volume mesh 
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Water refinement block control for finer mesh in 
water coarser in air zone, base size is 2 cm, 
refinement block is 50% of base 
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Extended domain test with coarser grid shows 
smaller domain is O.K.  less expensive to run  
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Polys in grate region minimize numerical diffusion 
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By pass flow at curb gets pushed back into grate 
for low velocity case (Vin = 0.87 m/s) 
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Highest longitudinal street slope & velocity  
Vin = 2.7 m/s, supercritical, case 10 
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Highest longitudinal street slope & velocity  
Vin = 2.7 m/s, supercritical, case 10 
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Changing to the vane grate caused convergence 
problems 

■ Any significant geometry change in a model can result in convergence problems 
■ Going far outside the parameter range of a working model can do the same 
■ Often the problem lies in the mesh 
■ Solution is to identify where the problem is in the geometry and fix it 

– Change meshing parameters, and remesh 
– Or eliminate bad cells 
– Or modify the geometry – fine details causing problems may not be relevant to flow 

field behavior of interest  

■ Many other things can be done 
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Identification of cells in catch basin with poor 
convergence 
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Finer mesh in catch basin on right solved 
convergence problem  
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Vane Grate Case - 3 inlet velocity 1.05 m/s 
Fr at curb 1.08, street longitudinal slope = 0.03 

23 



U.S. Department 
of Transportation TRACC  Transportation Research and Analysis Computing Center 

Vane Grate Case 3 -inlet velocity 1.05 m/s 
Fr at curb 1.08, street longitudinal slope = 0.03 
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Streamlines 
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Plotted Results for Cases with Varying 
Longitudinal Street Slopes  
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Comparison of inlet flow captured by ADA and vane 
grates for uniform cross slope 8 ft spread cases 
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Comparison of total flow entering over grate from side for 
ADA and vane grates uniform cross slope 8 ft spread cases 
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Correlations of results all cases with 
inlet Reynolds or Froude Number 
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Flow captured vs. Upstream (Inlet) Reynolds 
Number 

■ Grate performance appears to correlate well with upstream Reynolds number 
– Represents ratio of (water inertia)/(street and curb surface resistance to flow) 

■ ADA and vane grate performance are close at low Re near 100,000 
■ ADA grate performance drops increasingly farther below vane grate performance 

as Re increases to 790,000. 
■ At Re = 44,000 both grates capture approximately 75% of the flow 
■ At Re = 790,000 the vane grate capture drops to 38% of the flow 
■ At Re = 790,000 the ADA grate capture drops to 13% of the flow 
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where ρ is the water density, V is the mean velocity at the inlet cross section, dh is the 
hydraulic diameter at the inlet, μ is the water viscosity, Q is the volume flow rate at the inlet, Pw 
is the gutter width, Ps is the wetted street width, and h is the water depth at the curb. A is the 
inlet cross section area and Q = V A. 
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Fraction of Total Flow Entering Over Grate from 
Side vs. Upstream Froude Number at Curb 

■ Flow over Grate from side appears to correlate well with upstream Froude 
number 

– Represents ratio of (water velocity)/(wave speed) 
– Also represents ratio of (water inertia)/(gravitational force) 

■ Amount entering from side is relatively low for both grates 
– Lower for ADA grate with difference increasing as curb Froude number increases 

■ At Fr = 0.5, 12% of flow enters over side of vane grate, 11% for ADA grate 
■ At Fr = 2.7, 3% of flow enters over side of vane grate, only 1% for ADA grate 
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where V is the mean velocity at the inlet cross section, h is the water depth at the curb, and g 
is the acceleration of gravity.  
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Fraction of Flow Directly over Grate that is 
Captured vs. Upstream Reynolds Number 

■ Good illustration of performance difference between the grates  
■ Once water flows directly over vane grate, nearly all of it ends up in the catch 

basin 
– Only small dependence on Reynolds number 
– At low Reynolds number all flow entering over vane grate is captured 
– At high Reynolds number (790,000) less than 3% directly over the grate is not captured 

■ ADA grate performance in capturing flow directly over it is much different 
– At the lowest Reynolds number nearly all flow directly over ADA grate is captured 
– As Re increases less and less flow directly over the ADA grate is captured 
– At Re = 790,000 only 34% of flow directly over the ADA grate is captured 
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Low flow case 
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High flow case 
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Thank you for your attention  
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