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Argonne: One of DOE’s Largest Research Facilities

St Argonne computer clusters
are in a controlled
environment .

i ST TR S < TRACC Phoenix and Zephyr
e e SR G e, clusters are here.

[

Many clusters, including
800,000 core Mira
supercomputer, are here.

Computations span scales from /

molecular dynamics
to—> in the middle: hydraulics
astrophysics
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Current Hydraulics CFD Work at TRACC

= QOther Presentations
=  Rockery Wall under Flood Conditions
=  Riprap Onset of Motion

= Hydraulic Performance of Grates

=  This Presentation

= Tsunami Flume Modeling
= Pier Extensions to Prevent Scour
= 3D Scour Modeling Update
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Argonne TRACC is Doing More Full Field Scale Modeling
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Additional Software Capabilities are Available Each
Year

= Basic 3D flow analysis — force distribution on piers & bridge decks, shear on river
beds

= Compute water force on objects, then answer questions:

— Will it break, if so, how will it break — answer that with computational
structural mechanics software (a fluid structure interaction , FSI, problem)

— Will it move (riprap or structures), if so, what moves, where and how far

=  Mesh morphing and new overset mesh capabilities allow relative motion of
objects in a flow flied during solution (examples follow)

= Dynamic Fluid Body Interaction (DFBI) computes response of a rigid body to fluid
forces, moves the body, and adjusts the mesh

= All of these new capabilities allow a much broader class of problems to be solved

U.S. Department of Transportation TRACC Transportation Research and Analysis Computing Center



Modeling a Tsunami Wave Flume - Basis for Real
World, Full Scale Model
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Showing Finer Mesh Near Water Surface and Bridge

View of Computational Mesh on Boundaries
Deck
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Plate Moves to Generate Wave

Mesh Morphing Adjusts Mesh for Motion of Plate

Front Compresseo
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Tsunami Flume Water Surface Animation
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£ Solution Time 0.001 (s)




Tsunami Flume Velocity Vector Animation

oS SO

Velocity (m/s)
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Solution Time 0.001 (s)
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Tsunami Flume Water Volume Fraction Animation
on Plane Cut through Bridge Deck

Volume Fraction of Water
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Solution Time 0.001 (s)




Force on Bridge Deck vs. Time
Deck Weight: Thermoplastic= 9 N (2 Ibf.)
Concrete =21 N (4.7 Ibf.)
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Cable Vibration Example: New Overset Mesh
Capability Can Eliminate Mesh Morphing Problems
for Some Problems Involving Object Motion

Overset Mesh

~

Pressure
Outlet

Velocity
Inlet

A s

o 7.3 million cells, Time-step= 0.005 s
 Wind Velocity = 35 m/s
 Detached Eddie Simulation (SST K-Omega)

13



calar Horizontal Velocity W.R.T. Time




Santa Ana River-Reach 9 -BNSF
Rail Road bridge-3D Pier Extension
Model Study




Bridge and Pier Views
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Current Proposed Project Plan
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Cross Section Elevation View
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Computational domains
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3D CFD Computational Domain
Current Bathymetry
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Current Bathymetry (Colors showing elevation in feet)



Velocity for 2D and 3D Models

3D model velocity
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Shear Stress - No Pier Extensions

WENIBIEEN Stress. Magnitude (Pa).
1! 000 12,000 16,000 20.000




Effect of Tapering
Idea: More flow area & less potential to catch
debris

Original Configuration Tapered Configuration



Velocity Magnitude (at elevation 425.5ft)

Velocity: Magnitude (ft/s)

B 600
PALN R SN LSV RAANE AN VR
!"///‘ SN Y SR NEIRIR | L)
h 12.80 44! BRI R LA
Ty % SNRMCERL VAL BN LT ‘ .
wiu‘ A R R e S S U Yelocity: Mmﬂﬁueﬁnk

TRE L\ % N\ 9L W
RAN SRR __“ ).l G AN TR L 4 960 .HH1!:\\\\\‘“\\\\\\\fl\\q\.\\\‘\\
I S S SR ANV AN AN 4 .

y R RS SRR R RN

BRSO R M \ 640 R e N R R A R R \.\

SOSOURORESSRANTT L ARTNARE S AR \\ = ‘ :

. : LS 320 \x_:\\q R R R RN

M,

\\.\_\._‘ @RS SR
R (R

Ws\ bt \ \\\\\\\\\ SN R
AT ANTINN AN R
ASEATIRTRTECA NN 0 TRN

\ | '
[ RERITARUARANNN T, T
H RIS AR

L H AR A WSRO SRR NN

Non-Tapered Pier Extensions

| . 0.00

R S A R A

\\\\\\\\\\\ s
AARY X\\ / f \\-\\ AN
MRV \J ALV :
\\\\\ i) \\\\\\\\\\\\\\\\\\\\\ \\\\\\ |
1 TR EANNERR R A R R R
LT /] A A AR 1 H
PR /T R R

i
/] \!\ _
APARAL LA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\ :

Tapered Pier Extensions



Bed Shear Stress

Stress: Magnitude (Pa) I
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Effect of Reducing Pier Extension Length

Original Configuration Extension Length 80% Extension Length 50%



Velocity (below surface at 425.5 ft)
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Bed Shear Stress with half the pier extension length

peasstress: Magnitude (Pa). WEIIBIIERY: S tress: Magnitude (Pa)
o0 12000 16.000 20.000 . 0.0006 4000 20l 12,000 16000/ 20,000
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Effect of Changing Angles

Original Configuration Angle 10°



Bed Shear Stress

Original Configuration Extension Angle 10 deg
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3D Scour Modeling Update
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Three-dimensional scour analysis

= Erosion (scour) theory is a big area of research
— Many papers published

= The theory must be implemented with procedures that run on digital computers
— Requires much more than traditional differential equation solvers

= Computational machinery for scour analysis receives less attention than theory
— Moving bed & deforming mesh
— Particle models need mechanism for
e Entry through a rough wall
e Obtaining smooth settling rate distribution

U.S. Department of Transportation TRACC Transportation Research and Analysis Computing Center

A

34



e
Model Scour Flume Geometry and Conditions
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Model Components

= Van Rijn sediment erosion rate function

— Easily replaced by other functions
— Includes variable critical shear stress factor (lower for downhill, higher for uphill flow)

=  Mesh morphing stretches/compresses mesh to maintain cell quality as scour
displaces the bed (does not add or remove cell layers)

= Periodic remeshing to restore high cell quality to stretched meshed (adds cell layers
where scour hole becomes deep and eliminates problem cells)

=  Scour computation and remesh cycle done automatically with Java macro capability

36



Scour after about 6 minutes with distorted pier
after nearly 200 remeshings

Centroid(Y) (m)

-0.13226 -0. 10581 -0.0/9356 -0.052904 -0.026452 55511e-017
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Repeated Remeshing Problem Nearly Solved

= Object surfaces in domain are distorted by floating morpher B.C. on pier
= New Slide along surface morpher B.C. solves the distortion problem & Seemety

i [ 3D-CAD Models

— The new B.C. still has some bugs - Parts
. .. . - [E Descriptions
— Irregular and small cells at the pier-bed joint problem still present [ Contacts
: w0 T
= Parts base meshing best for remesh as needed 3 Fitws

E}I] Operations
E FluidWrap
— Extract only bed surface to export in Nastran file at remesh time -y Automated Mesh

— Define the bed surface as a separate part

— Replace bed surface part
— Use wrapper in large domain with bed surface to regenerate liquid region
— Use mesh part operation to remesh liquid region

The parts base remesh works in serial operation but not in parz

— Worapper step fails when running

o 38



General and Pier Scour, First 20 Minutes
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t out of round before a remesh
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Scour Around Group of Complex Shaped Piers
(Turner-Fairbank Highway Research Center)

Position[Y] (m)
-0.0200 -0.0150 -0.0100 -0.00500
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