

US Army Corps of Engineers

Identifying and adjusting for effects of urbanization on peak streamflows

Thomas Over, Riki Saito, and David Soong, USGS-Illinois Water Science Center; T-Y Su, USACE-Chicago District

FHWA National Hydraulic Engineering Conference Iowa City, Iowa August 22, 2014

Green and 4th Sts., Champaign, IL, July 30, 1979

General Background: Comparing rural and urban flood frequency estimation techniques

Rural:

Nature of Transfer of hydrologic problem: information *in space*, from gaged to ungaged.

Status of regional regression equations (RREs):

Widely available (e.g., in StreamStats) and regularly updated.

Value of simulation models:

Not clear they are better than RREs (e.g., Hodgkins et al., 2007). **Urban:**

Transfer of hydrologic information *in both space and time*, from gaged to ungaged and from present to the future of an urbanizing watershed.

Not as widely available (none in StreamStats?); possible national options: Sauer et al. (1983), Moglen and Shivers (2006).

Urban watersheds probably more amenable to simulation modeling: surface runoff-dominated, engineered flood-control facilities.

Project Background: Urban peak estimation in Illinois DOT Drainage Manual

Regional regression equations (RREs):

- "standard method" in both rural and urban watersheds
- not all local agencies accept urban RREs.

Rural RREs:

- Iast updated in 2004 (Soong et al.) with data thru 1999.
- implemented in StreamStats.

Urban RREs

- report published 1979 (Allen and Bejcek) with data thru 1977.
- not present in StreamStats.

Estimating imperviousness from population density (Allen & Bejcek, 1979)

Figure 2.--Relationship between percentage of imperviousness and population density.

Effect of imperviousness on flood peaks in northeast Illinois (Allen & Bejcek, 1979)

Figure 6.--Effect of urbanization on flood magnitudes in northeastern Illinois.

Reasons for updating Allen & Bejcek (1979) equations:

- 30+ years additional data.
- Changes in nature of development (stormwater detention).
- Enable implementation in StreamStats.

Overview of Project:

- Phase I: Adjust historical records to present (2010) conditions topic of this presentation.
- Phase II: Compute regional regression equations (RREs) for each flood quantile as an adjustment factor applied to rural RREs for northeast Illinois, which are also being updated:

$$Q_T = aA^b S^c W^d \rightarrow Q_T = aA^b S^c W^d U^e$$

A = Drainage Area, S = slope, W = fraction of water or wetlands, U = fraction of urbanized land

(same basic structure as existing Q&B79 equations)

Why adjust? 1a. More records can be used

Old Records

- At-site record is not applicable to present conditions.
- To use in a regionalization study as-is, would need to know land use during 1970s.

Kishwaukee R. near Huntley, IL (05437950)

Why adjust? 1b. More records can be used

Records with urbanization related trends

Why adjust? 1c. More records can be used.

Records with trends and construction of major floodcontrol facilities

4000 1.0 0.9 Storage (10s of ac-ft) 3500 0.8 3000 0.7 **Urban Fraction** 2500 0.6 0.5 2000 0.4 Flow (cfs) or 1500 0.3 1000 0.2 500 0.1 0.0 0 1940 1950 1960 1970 1980 1990 2000 2010 Peak flow (cfs) Reservoir Storage (10s of ac-ft) Urban Fraction

Salt Ck at Western Springs, IL (05531500)

Why adjust?

2. Yields an additional product: At-site flood peak record consistent with present landuse conditions.

3. Scientific value:

- Direct observation of past effects of urbanization
- Allows testing of swapping of space for time: Do effects of differences in urbanization between watersheds agree with effects of changes in urbanization over time?

Steps in adjustment

1. Select and process input data

- Select stations
- Split peak flow records into segments at years when major flood control facilities built ("urbanization" considered as land use change).
- Create annual urbanization and precipitation data sets.
- 2. Apply regression technique to obtain regional coefficients showing effect of urbanization and precipitation.
- **3.** Adjust peaks to present urbanization.

Data Used for Adjustment

Selected streamflow stations

Data used for adjustment:

Precipitation stations and Thiessen polygons

Data used for adjustment

Historical urbanization data: Decadal housing density product based on 2000 Census (Theobald, 2005)

(2010 values are projected)

Regression modeling

Two-step "fixed effects" quantile regression model (Canay, 2011):

Step 1: OLS "panel" regression: Determine fixed effects, which are intercepts of each station segment.

Step 2: Subtract fixed effects.

Step 3: Apply *quantile regression* to remainder to determine coefficients of *U* (urbanization) and *P* (precipitation) for each exceedance probability of interest.

Regression step 1:Adjustment step 2Find intercepts a(i) for each station segment iand common regional slopes b_U and b_P

For each segment *i* and year *t*,

$$y(i,t) = \log_{10}Q(i,t) = a(i) + b_U U(i,t) + b_P P(i,t) + e(i,t),$$

where

Q = annual maximum flood peak a(i) = intercept (fixed effect) of segment *i* b_U = regional urbanization coefficient = ~0.55 U = urbanized fraction of watershed b_P = regional precipitation coefficient = ~0.10 P = maximum daily precipitation e = error term

Regression step 1

Plot shows urbanization dimension only

Regression step 2: Subtract fixed effects (intercepts)

Data now assumed to be homogeneous between stations

Regression model step 3: Find common regional slopes $\beta_U(p)$ and $\beta_P(p)$ depending on frequency *p* by *quantile regression*

For each exceedance probability (EP) p,

$$y'(i,t) = \log_{10}Q(i,t) - a(i) + \langle a \rangle =$$

 $\alpha(p) + \beta_U(p)U(i,t) + \beta_P(p)P(i,t) + \varepsilon(i,t),$

where

Q = annual maximum flood peak a(i) = intercept (fixed effect) of segment *i* $\beta_U(p)$ = regional urbanization coefficient for EP p = [.2-.9] (?) U = urbanized fraction of watershed $\beta_P(p)$ = regional precipitation coefficient for EP p = [.05-.15] (?) P = maximum daily precipitation e = error term

Regression step 3: Quantile regression

Plot shows urbanization dimension only

Adjustment to 2010 urbanization:

Two steps:

- 1. Assign exceedance probability p to each observatoin by interpolation among quantile regression lines (planes)
- **2.** Adjust by adding $\beta_U(p)[U(i,t) U(i,2010)]$ for changing urbanizatoin between year t and 2010, that is:

$\log_{10}Q_{2010}(i,t) = \log_{10}Q(i,t) + \beta_U(p)[U(i,t) - U(i,2010)]$

where

Q = annual maximum flood peak $\beta_U(p)$ = regional urbanization coefficient for EP p**U** = urbanized fraction of watershed

Original and adjusted peak flows

Example of Adjusted Record: Old Record

Adjustment step 3

Note: Assumes no major flood control works since end of record.

Example of adjusted record: Urbanization trend

Adjustment step 3

Example of adjusted record: segmented

≥USGS

Adjustment step 3

Salt Ck at Western Springs, IL (05531500)

Conclusions

- Method developed to diagnose temporal effect of urbanization on peak flows.
- Found that temporal effect of urbanization decreased with increasing return period, agreeing with existing spatial equations.
- Allows adjustment of peak flow records to present conditions for use in spatial regression analysis
- Traditional spatial regression analysis is now underway.

