

CFD Modeling of Rockery Walls in the River Environment

2014 National Hydraulic Engineering Conference

August 22, 2014 Iowa City, IA

Dr. Cezary Bojanowski Dr. Steven Lottes Bart Bergendahl

Part I: Introduction

Bart Bergendahl

Preliminary Rainfall / Runoff Data

Rainfall (Sept 9-18, 2013)

Location	Duration	Measured	Return Int. (NOAA)
Button Rock Dam	6 hour	4.37 inches	1000 year
	10 day	16.13 inches	>1000 year
Peak Discharges			
Location	Q100 (FEMA)	Measured	Return Int. (FEMA)
Location North St. Vrain Crk.	Q100 (FEMA) 4310 cfs	Measured 12,300 cfs	Return Int. (FEMA) >500 year

Question...

- If large, loose rock riprap (e.g. D50 = 3'; D100 = 5.5') is theoretically unstable when placed on a 1:1 slope of a river bank, can same rock be stable when stacked in a near-vertical orientation (i.e. a dry-stack rockery wall at the river bank)?
- Knowledge gap for hydraulics and geotech
- Design guidance needed for riverine and coastal applications
- Enter TRACC of Argonne National Laboratory and technical assistance thru CFD Modeling...

Part II: CFD modeling

Cezary Bojanowski Steven Lottes

Geometry of the base model - Case 1

Geometry of the model without filler - Case 2, 3

Geometry of the base model - Case 4

Analyzed cases

Analyzed basic cases:

Case No.	Water height	Inlet velocity	Angle at inlet	Filler model
1	12 ft	4.25 m/s 14 ft/s	0 deg	Porous media
2	12 ft	4.25 m/s 14 ft/s	0 deg	Void + Wall
3	12 ft	4.25 m/s 14 ft/s	20 deg	Void + Wall
4	7 ft	3.5 m/s 11.5 ft/s	0 deg	Porous media
5	7 ft	3.5 m/s 11.5 ft/s	0 deg	Void + Wall

- Additionally, following cases were run:
 - Curved wall model
 - Rocks protruding into the flow
 - Scaled rocks

Volume mesh on the base model

- 1.5 M 5.2 M polyhedral cells (denser mesh around the rocks)
- Length of the model 50 m
- Unsteady Reynolds Averaged Navier Stokes model with k-epsilon turbulence and Volume of Fluid

Volume fraction of water in computational cell

- The model for free surface flow tracking in CFD terminology is called volume of fluid (VOF).
- It may be sensitive to the time step of calculations and it requires careful initialization of the simulation.
- The time step of calculations was set to 0.1 s.
- The simulations were run for 100+ seconds (depending on the case) until stable results were obtained.

Velocity

- Porous media model averages the properties of the filler.
- Flow velocities in the porous media model are usually very low as compared to the main flow.
- More conservative results can be obtained if there is a narrow void behind the rocks ending at a rough continuous wall that allows for some flow.

Location of rocks of interest

- The rocks of interest have the same frontal area i.e. projection on XZ plane
- Having the same XZ projection allows for comparison of the forces normal to the flow (Y force).
- Their projection in YZ plane is different due to the slope of the wall.
- Forces on the rocks at two locations are compared.

- Positive X force means along the flow
- Positive Y force means a force pulling the rock into the flow
- Positive Z force means an upward force

Dry weight of rocks of interest

Weight = V * rho * g = Vol * 2,500 kg/m^3 * 9.81 m/s2 Submerged Weight = V * $(rho_s - rho_w)$ * g = Vol * 1,500 kg/m^3 * 9.81 m/s²

- Weight of rock 4 = 45,000 N
- Volume of rock 4 = 1.83 m³
- Weight of rock 3 = 54,900 N
- Volume of rock 3 = 2.24 m³
- Weight of rock 2 = 62,600 N
- Volume of rock 2 = 2.55 m³
- Weight of rock 1 = 71,800 N
- Volume of rock 1 = 2.92 m³

Hydrodynamic forces on a single rock in the flow

• Overall Z force consists of the following components:

- Weight
- Buoyancy
- Drag
- Contact forces
- Z force from CFD consists of TWO only:
 - Buoyancy
 - Drag
- Presented graphs show only the drag component (the hydrodynamic components only)

Forces on Rock 1a and 1b

- Rock 1 is partially buried so the Z force is not included because pressure integration over bottom surface can't be done.
- Dry weight of rock 1 = 71,800 N

	Case No.	Water height	Inlet velocity	Filler model
	1	12 ft	14 ft/s	Porous
V	2	12 ft	14 ft/s	Void
X	3	12 ft	14 ft/s @20 deg	Void
Ī	4	7 ft	11.5 ft/s	Porous
	5	7 ft	11.5 ft/s	Void

Forces on Rock 2a and 2b

 The simulations are transient causing the forces tend to fluctuate by a small amount as waves pass.

Filler

model

Porous

Void

Void

Porous

Void

Dry weight of rock 2 = 62,600 N

Forces on Rock 3a and 3b

Rock 3 is only partially covered with water in cases 4 and 5, Rock 4 is dry in these cases

Filler

model

Porous

Void

Void

Porous

Void

Dry weight of rock 3 = 54,900 N

Simulations with curved wall model

STAR-CCM+

Curved wall model - velocity

- Inlet velocity is set to 2 m/s
- The velocity in the contracted zone increases to 6 m/s

Curved wall model - pressure

Simulations with rocks protruding into the flow 10, 20, and 30 % of depth (0.6 m = \sim 2 ft)

Simulations with rocks protruding into the flow

Simulations with scaled geometry

- The rocks have been scaled down in size 2, 4, and 8 times in each direction
- The volume (and mass) decreased 8, 64, and 512 times

Scale factor	Volume factor	Mass (kg)	Characteristic size (m)
1.0	1.0	6400	2 x 2 x 1
0.5	0.125	800	1 x 1 x 0.5
0.25	0.015625	100	0.5 x 0.5 x 0.25
0.125	0.001953125	12.5	0.25 x 0.25 x 0.125

- The rock size has changed but the domain size and conditions did not.
- Similar mesh settings were preserved to keep the Y+ at similar level.
- Initial runs were with Y+ = 150, new meshes have been built to lower it down to about 50

Results ratio of X and Y force to the weight

- The ratio was averaged over six rocks of the same size at the same height.
- There is no clear trend for X force.
- For the Y force an increasing ratio was expected.
- The ratio of the Y force to weight varies from 0.05 to 0.27 for the smallest rocks (12.5 kg or 25 lb)

Summary

- For the basic cases the lateral (Y) force ratio to the submerged weight of the rock varies from 0.05 to 0.11.
- The streamwise (X) component ratio has a lot more variation but is usually below 0.1.
- The depth at which the rock is placed influences slightly the lateral (Y) force ratio.
 If it is buried or partially submerged the ratio will vary.
- Curved wall setup didn't increase these forces.
- Protrusion of a rock into the flow will increase the ratios but even 30% of protrusion didn't cause the ratio to go significantly above 0.1.
- For the scaled rocks the Y force components grow with the decreasing size. For smaller rocks (1 ft x 1 ft x 0.5 ft) the ratio can be even up to 0.27.

Thank you!

Extra slides

Initial Conditions

Case (1) 12ft c	of water
W:=20 ft	L:= 12 <i>ft</i>
W = 6.096 m	L = 3657.6 mm
S:=0.023	k:= 1 n:= 0.05
$\mathbf{R} \coloneqq \frac{\mathbf{L} \cdot \mathbf{W}}{\mathbf{W} + 2 \cdot \mathbf{L}} \cdot \frac{1}{m}$	R=1.6625
$\mathbf{V} \coloneqq \frac{\mathbf{k}}{\mathbf{n}} \cdot \mathbf{R} \xrightarrow{\frac{2}{3}} \cdot \mathbf{S} \xrightarrow{\frac{1}{2}} \frac{\mathbf{m}}{\mathbf{s}}$	$V = 4.2567 \frac{m}{s}$
Case (2)7ft of	water

Case (2)/it of water		
₩:=20 <i>ft</i>	L:= 7 <i>ft</i>	
W = 6.096 m	L = 2133.6 mm	
S:=0.023	k:= 1 n:= 0.05	
$\mathbf{R} \coloneqq \frac{\mathbf{L} \cdot \mathbf{W}}{\mathbf{W} + 2 \cdot \mathbf{L}} \cdot \frac{1}{m}$	R=1.2551	
$V := \frac{k}{n} \cdot \frac{2}{R} \cdot \frac{1}{2} \cdot \frac{1}{2} \frac{m}{s}$	$V = 3.5291 \frac{m}{s}$	

