CFD Modeling of Rockery Walls in the River Environment

2014 National Hydraulic Engineering Conference

August 22, 2014
Iowa City, IA

Dr. Cezary Bojanowski Dr. Steven Lottes

Part I: Introduction

Bart Bergendahl

US Hwy 36 Flood Damage Lyons to Estes Park, CO

> Little Thompson River below West Fork

Little Thompson River above West Förk

7
 Sun?

Middle St. Vrain River above S ?'St. Vrän

Preliminary Rainfall / Runoff Data

Rainfall (Sept 9-18, 2013)			
Location	Duration	Measured	Return Int. (NOAA)
Button Rock Dam	6 hour	4.37 inches	1000 year
	10 day	16.13 inches	>1000 year
Peak Discharges			
Location	Q100 (FEMA)	Measured	Return Int. (FEMA)
North St. Vrain Crk.	4310 cfs	12,300 cfs	>500 year
Little Thompson R.	2585 cfs	7800 cfs	>500 year

TYPICAL EMBANKMENT ARMORING SECTION BEDROCK AT EXISTING GROUND

TYPICAL EMBANKMENT ARMORING SECTION BEDROCK 5' OR LESS BELOW EXISTING GROUND
Reset

Question...

- If large, loose rock riprap (e.g. D50 = 3'; D100 = 5.5') is theoretically unstable when placed on a 1:1 slope of a river bank, can same rock be stable when stacked in a near-vertical orientation (i.e. a dry-stack rockery wall at the river bank)?
- Knowledge gap for hydraulics and geotech
- Design guidance needed for riverine and coastal applications
- Enter TRACC of Argonne National Laboratory and technical assistance thru CFD Modeling...

Part II: CFD modeling

Cezary Bojanowski

Steven Lottes

Geometry of the base model - Case 1

Geometry of the model without filler - Case 2, 3

Geometry of the base model - Case 4

Analyzed cases

- Analyzed basic cases:

Case No.	Water height	Inlet velocity	Angle at inlet	Filler model
1	12 ft	$4.25 \mathrm{~m} / \mathrm{s}$ $14 \mathrm{ft} / \mathrm{s}$	0 deg	Porous media
2	12 ft	$4.25 \mathrm{~m} / \mathrm{s}$ $14 \mathrm{ft} / \mathrm{s}$	0 deg	Void + Wall
3	12 ft	$4.25 \mathrm{~m} / \mathrm{s}$ $14 \mathrm{ft} / \mathrm{s}$	20 deg	Void + Wall
4	7 ft	$3.5 \mathrm{~m} / \mathrm{s}$ $11.5 \mathrm{ft} / \mathrm{s}$	0 deg	Porous media
5	7 ft	$3.5 \mathrm{~m} / \mathrm{s}$ $11.5 \mathrm{ft} / \mathrm{s}$	0 deg	Void + Wall

- Additionally, following cases were run:
- Curved wall model
- Rocks protruding into the flow
- Scaled rocks

Volume mesh on the base model

- $1.5 \mathrm{M}-5.2 \mathrm{M}$ polyhedral cells (denser mesh around the rocks)
- Length of the model 50 m
- Unsteady Reynolds Averaged Navier Stokes model with k-epsilon turbulence and Volume of Fluid

Volume fraction of water in computational cell

- The model for free surface flow tracking in CFD terminology is called volume of fluid (VOF).
- It may be sensitive to the time step of calculations and it requires careful initialization of the simulation.
- The time step of calculations was set to 0.1 s .
- The simulations were run for $100+$ seconds (depending on the case) until stable results were obtained.

Case 2

Velocity

- Porous media model averages the properties of the filler.
- Flow velocities in the porous media model are usually very low as compared to the main flow.
- More conservative results can be obtained if there is a narrow void behind the rocks ending at a rough continuous wall that allows for some flow.

Location of rocks of interest

- The rocks of interest have the same frontal area i.e. projection on XZ plane
- Having the same XZ projection allows for comparison of the forces normal to the flow (Y force).
- Their projection in YZ plane is different due to the slope of the wall.
- Forces on the rocks at two locations are compared.

- Positive X force means along the flow
- Positive Y force means a force pulling the rock into the flow
- Positive Z force means an upward force

Dry weight of rocks of interest

Weight $=\mathrm{V} *$ rho $* \mathrm{~g}=\mathrm{Vol} * 2,500 \mathrm{~kg} / \mathrm{m}^{\wedge} 3 * 9.81 \mathrm{~m} / \mathrm{s} 2$
Submerged Weight $=\mathrm{V} *\left(\mathrm{rho}_{\mathrm{s}}-\mathrm{rho}_{\mathrm{w}}\right) * \mathrm{~g}=\mathrm{Vol} * 1,500 \mathrm{~kg} / \mathrm{m}^{\wedge} 3 * 9.81 \mathrm{~m} / \mathrm{s}^{2}$

- Weight of rock $4=45,000 \mathrm{~N}$
- Volume of rock $4=1.83 \mathrm{~m}^{3}$
- Weight of rock $3=54,900 \mathrm{~N}$
- Volume of rock $3=2.24 \mathrm{~m}^{3}$
- Weight of rock $2=62,600 \mathrm{~N}$
- Volume of rock $2=2.55 \mathrm{~m}^{3}$
- Weight of rock $1=71,800 \mathrm{~N}$
- Volume of rock $1=2.92 \mathrm{~m}^{3}$

Hydrodynamic forces on a single rock in the flow

- Overall Z force consists of the following components:
- Weight
- Buoyancy
- Drag
- Contact forces
- Z force from CFD consists of TWO only:
- Buoyancy
- Drag
- Presented graphs show only the drag component (the hydrodynamic components only)

Forces on Rock 1a and 1b

- Rock 1 is partially buried so the Z force is not included because pressure integration over bottom surface can't be done.
- Dry weight of rock $1=71,800 \mathrm{~N}$

Rock 1

Forces on Rock 2a and 2b

- The simulations are transient causing the forces tend to fluctuate by a small amount as waves pass.
- Dry weight of rock $2=62,600 \mathrm{~N}$

Rock 2

Forces on Rock 3a and 3b

- Rock 3 is only partially covered with water in cases 4 and 5 , Rock 4 is dry in these cases
- Dry weight of rock $3=54,900 \mathrm{~N}$

Rock 3

Simulations with curved wall model

Curved wall model - velocity

- Inlet velocity is set to $2 \mathrm{~m} / \mathrm{s}$
- The velocity in the contracted zone increases to $6 \mathrm{~m} / \mathrm{s}$

Curved wall model - pressure

Simulations with rocks protruding into the flow 10,20 , and 30% of depth ($0.6 \mathrm{~m}=\sim 2 \mathrm{ft}$)

Simulations with rocks protruding into the flow

Simulations with scaled geometry

- The rocks have been scaled down in size 2,4 , and 8 times in each direction
- The volume (and mass) decreased 8, 64, and 512 times

Scale factor	Volume factor	Mass (kg)	Characteristic size (m)
1.0	1.0	6400	$2 \times 2 \times 1$
0.5	0.125	800	$1 \times 1 \times 0.5$
0.25	0.015625	100	$0.5 \times 0.5 \times 0.25$
0.125	0.001953125	12.5	$0.25 \times 0.25 \times 0.125$

- The rock size has changed but the domain size and conditions did not.
- Similar mesh settings were preserved to keep the $Y+$ at similar level.
- Initial runs were with $\mathrm{Y}_{+}=150$, new meshes have been built to lower it down to about 50

Results ratio of X and Y force to the weight

- The ratio was averaged over six rocks of the same size at the same height.
- There is no clear trend for X force.
- For the Y force an increasing ratio was expected.
- The ratio of the Y force to weight varies from 0.05 to 0.27 for the smallest rocks (12.5 kg or 25 lb)

Summary

- For the basic cases the lateral (Y) force ratio to the submerged weight of the rock varies from 0.05 to 0.11 .
- The streamwise (X) component ratio has a lot more variation but is usually below 0.1.
- The depth at which the rock is placed influences slightly the lateral (Y) force ratio. If it is buried or partially submerged the ratio will vary.
- Curved wall setup didn't increase these forces.
- Protrusion of a rock into the flow will increase the ratios but even 30% of protrusion didn't cause the ratio to go significantly above 0.1.
- For the scaled rocks the Y force components grow with the decreasing size. For smaller rocks ($1 \mathrm{ft} \times 1 \mathrm{ft} \times 0.5 \mathrm{ft}$) the ratio can be even up to 0.27 .

Thank you!

Extra slides

Initial Conditions

```
Case (1) 12ft of water
```

$$
\begin{array}{ll|}
\mathrm{W}:=20 \mathrm{ft} & \mathrm{~L}:=12 \mathrm{ft} \\
\hline \mathrm{~W}=6.096 \mathrm{~m} & \mathrm{~L}=3657.6 \mathrm{~mm} \\
\hline \mathrm{~S}:=0.023 & \mathrm{k}:=1 \quad \mathrm{n}:=0.05 \\
\hline \mathrm{R}:=\frac{\mathrm{L} \cdot \mathrm{~W}}{\mathrm{~W}+2 \cdot \mathrm{~L}} \cdot \frac{1}{\mathrm{~m}} & \mathrm{R}=1.6625 \\
\hline \mathrm{~V}:=\frac{\mathrm{k}}{\mathrm{n}} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}^{\frac{1}{2}} \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{~V}=4.2567 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\hline
\end{array}
$$

Froude Nuber

$\mathrm{v}_{1}:=4.25 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~g}:=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{~d}:=12 \mathrm{ft}$
Fr: $=\frac{v_{1}}{\sqrt{g \cdot d}}$

$$
\mathrm{Fr}=0.7095
$$

Case (2)7ft of water

$\mathrm{W}:=20 \mathrm{ft}$	$\mathrm{L}:=7 \mathrm{ft}$
$\mathrm{W}=6.096 \mathrm{~m}$	$\mathrm{~L}=2133.6 \mathrm{~mm}$
$\mathrm{~S}:=0.023$	$\mathrm{k}:=1 \quad \mathrm{n}:=0.05$
$\mathrm{R}:=\frac{\mathrm{L} \cdot \mathrm{W}}{\mathrm{W}+2 \cdot \mathrm{~L}} \cdot \frac{1}{\mathrm{~m}}$	$\mathrm{R}=1.2551$
$\mathrm{~V}:=\frac{\mathrm{k}}{\mathrm{n}} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}^{\frac{1}{2}} \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{~V}=3.5291 \frac{\mathrm{~m}}{\mathrm{~s}}$

Froude Nuber
$\mathrm{v}_{1}:=3.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
$g:=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$\mathrm{d}:=7 \mathrm{ft}$

Fr: $=\frac{\mathrm{v}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{~d}}}$
Fr $=0.765$

