Hwy 101/61 Flood Mitigation Past, Present, and Future

Presented by: Nicole Bartelt Minnesota DOT

Area of Concern: SW Metro

Area of Concern: SW Metro

SW Metro Flooding Snapshot

- 50,000+ vehicle per day detoured. 20,000 commuters.
- Regional and local impact.
- Significant economic impact.
- Emergency response time compromised.

Friday, October 1, 2010 6:30 a.m.

CH 18, ½ mile south of TH 169 interchange

TH101 & TH41 MnDOT Flood Impact Study

Project Background

Study Components

- Analysis of historical flooding
- Development and Evaluation of alternatives
- River modeling
- Agency involvement
 - USFWS
 - DNR
 - MPCA
 - USACE

Watershed Management Organization

Flooding History – TH41

Spring 2011 Flood – TH41 Looking North Towards Chaska

Flooding History – TH101

Spring 2011 Flood – TH101 Looking North Towards Chanhassen

Hydraulic Modeling Objectives

- Assess Water Surface Elevation for Existing Conditions
 - Existing Conditions Model Approx. 35 miles
 - From Carver to confluence with Mississippi River
 HEC-RAS 4.1.0
- Develop a Calibrated 2-D Model
 - Finite-Element Surface-Water Modeling System (FESWMS by Baird)
- Assess Impact of Design Alternatives
 - Reduce Road Closure Frequency & Duration

Hydraulic Models

- HEC-RAS (1D) vs. FESWMS (2D)
 HEC-RAS
 - Basic model used to evaluate alternatives
 - Regulatory model Calibrated by USACE
 - FESWMS
 - Detailed data set (river cross sections, USACE hydrographic survey, LiDAR data, and USDA/NRCS National Elevation Data)
 - More accurately evaluates velocities
 - D/S boundary condition: USGS Gage at Ft. Snelling
 Flow values: USGS Gage near Jordan

1D vs 2D Finite Element Grid - TH41

Finite Element Grid Near TH101

2-D Model Calibration

- Hydrodynamic Modeling using FESWMS
 - Calibrated Using Field Data
 - March 28, 2011 Event
 - Approximate 30-yr Event
 - Compared Flooded Inundation Area from Model to Actual Flood Photos
 - Measured Flow, Water Surface Elevation, and Velocity

2011 Flood Event – TH41

2011 Flood Event – TH101

Flow at Bridge 10012, TH41

Why Not Just Raise The Road

- Raising the road would cause impacts upstream as the flow is restricted due to a higher embankment
- Floodplain regulations do not allow fill in the floodway that will cause the river to rise
- Need "no-rise" solution

Design Alternatives

- Filling to Raise Road Profile
 - Modeling Showed Surcharge (Rise) in 100-Yr Floodway WSE
 - Culverts Could Not Mitigate Surcharge
- Use of Upstream Storage
 Not Feasible Due to Flat River Profile
- LOMR to Allow for Some Stage Increase
 - Not Practical Due to Length of Upstream Impact (30+miles)
- Land Bridge / Bridge

Land Bridge Design

- Iterative Process which Involved Varying:
 - Road Elevation
 - Bridge Length
 - Pier Width

- Pier Spacing
- Bridge Deck Depth

TH41 Preferred Concept

Road Closure Frequency – TH41

Road Closure Duration – TH41

TH101 Preferred Concept

Road Closure Frequency – TH101

Road Closure Duration – TH101

Modeling Results

- TH 41 and TH 101
 - No increase in stage (No Rise)
- TH 41
 - Velocity decreased for 10-Year event
 - Increased for larger events, yet less than maximum velocity for existing conditions
- TH 101
 - Velocity decreased for all events

Evaluation Criteria

- Construction Cost
- Benefit Cost
- Property Impacts and Costs
- Constructability
- Environmental Impacts/Opportunities
- Community Input

Comparison and Selection of Alternatives

• TH41 Preferred Concept

- \$22.4 Million to Design & Construct
- Benefit/Cost = 3.06
- TH101 Preferred Concept
 - \$33.3 Million to Design & Construct
 - Benefit/Cost = 3.81
- TH101 Selected
 - Carries more traffic
 - Reduced closure frequency and duration

Project Partners:

Hwy 101/61 Aerial Photo

Picture courtesy of Tony Wotzka, MnDOT

Hwy 101/61 Aerial View of Flooding

Photo courtesty of SRF, Inc

Project Background

- Flood Mitigation Study Completed in 2011
- Applied for Flood Mitigation Bonds in February 2012.
- March 2012: Awarded \$20,000,000 for 2 lane bridge.
- Counties Requested 2012 Legislature to fund -4-lane.
- January 2013: Cooperative Project started

Combined Project

- 4226' 4 lane Bridge offset from existing 101 roadway.
- 4-lane CR 61 (Flying Cloud Drive) with Roundabouts.
 ₃₉Signalized Intersection at 101N.

Floodplain Bridge

Floodplain Bridge Visualization

APRIL 13 196 HIGH WATEF ELEVATION

Engineering & Environmental Challenges

- Soil/foundation stability.
 Organics 15'-90' deep.
- Contaminated Soils.
- Bluff Creek Realignment.
- Water Quality Treatment.
- Cultural Resources.

Soil/Foundation stability

- Extended bridge ~1200ft to the north
- Pile bent pier design lateral stability
- Other soil stability measures
 - Pile supported embankment
 - Geofoam
 - Significant Muck removal and granular fill

Bluff Creek Realignment

- Extended bridge ~1200ft to the north
 Remove box culverts under Hwy 101
- Meandering channel pattern

Water Quality Treatment

- Overall Environmental Benefit
 - Removing Hwy 101 causeway, reconnecting floodplain
- Significant Resource Agency involvement

Cultural Resources - Archaeology

Cultural Resources - Archaeology

Pictures courtesy of Frank Florin

Other Challenges

- Funding
- Schedule
 - MnDOT has committed to building bridge in 2014.
 - Risk with combining bridge and 'Y' projects.
- Construction Phasing
- Roles and Responsibilities
- →Outlined in Construction Agreement

Project Update

- Project Awarded on May 20, 2014 to Ames Construction.
 - Winning Bid was \$49.3M
 - Engineers Estimate was \$50.4M
- Project Groundbreaking on June 24, 2014

Project Update

- PROJECT START DELAYED DUE TO FLOODING!
- Actual project start in Late July 2014
- Anticipated completion in November 2015

Twitter: @SWReconnectProj

Facebook: https://www.facebook.com/SouthwestReconnection Project

http://www.dot.state.mn.us/metro/projects/hwy101ri ver/

Acknowledgements

Lyndon Robjent, Carver County Molly Kline, MnDOT Ron Leaf, SEH Brad Woznak, SEH Rachel Pichelmann, SEH

