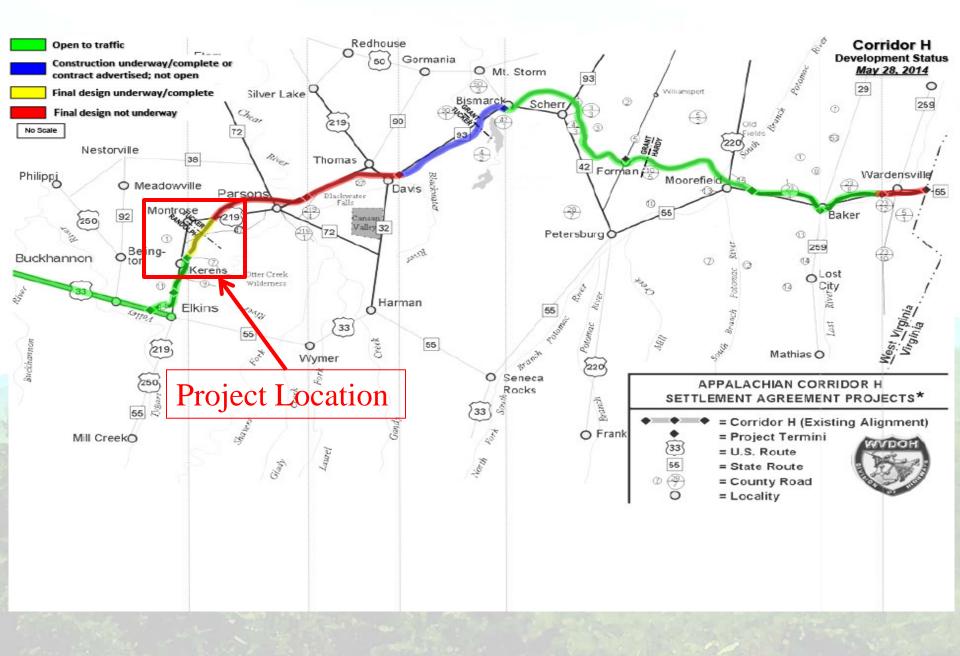
Creating Value ...

... Delivering Solutions

Mountain State Takes Eco-Friendly High Road "Tale of a Sensitive Watershed"

NHEC Conference, August 2014

Mohiuddin Shaik P.E., GISP, CFM (Baker) and Brigham S Ash, EIT (WVDOH)


Baker Presentation Layout

- Project Background
- Hydrologic Modeling
- Hydraulic Modeling
- Mitigation Strategy
- Water Exposure Analysis
- Shadow Modeling
- Summary and Discussion

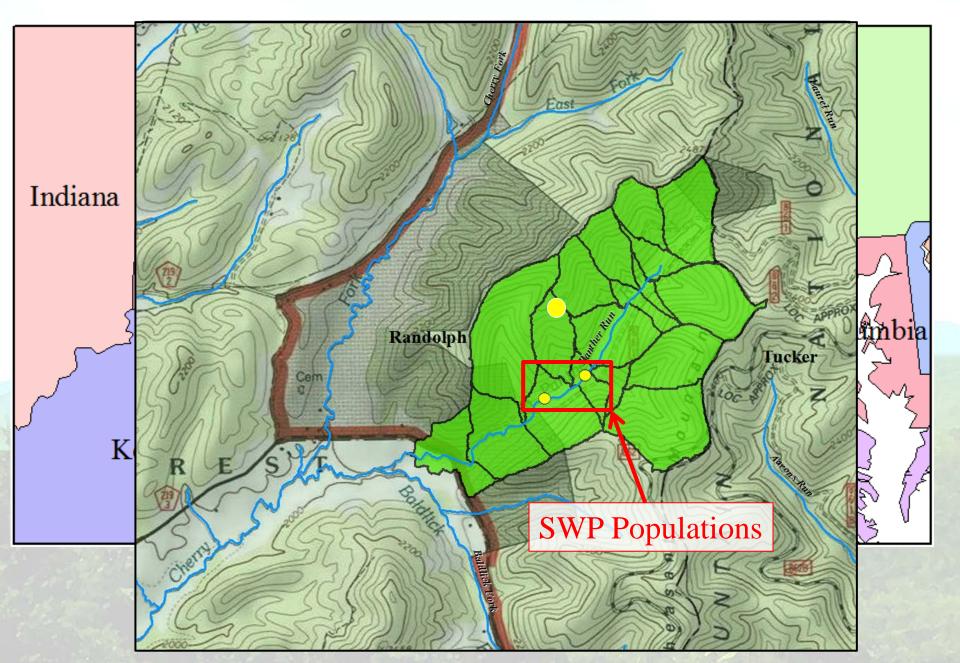
Baker Project Background

- Project Route Kerens to Parsons
- 7.5-mile Roadway Section
- Anticipated Construction Start: Spring 2016
- Integral part of Corridor H
- Corridors established under the Appalachian Development Highway System (ADHS)
- One of six transportation corridors in WV
- Last corridor yet to be fully constructed
- www.wvcorridorh.com

Baker Current Development Status

Baker Sensitive Watershed

- Monongahela National Forest
- Environmental Studies
- Small Whorled Pogonia
 - Threatened Species
 - Member of the orchid family
 - Widely distributed, but rare


cessfully cultivated

Called Sector Se

Images courtesy Doug Goldman, hosted by the USDA-NRCS PLANTS Database / USDA-NRCS-NPDT

Baker Hydrology and Hydraulics Study

Small Whorled Pogonia Isotria medeoloides

States where the small whorled pogonia, an orchid, is found.

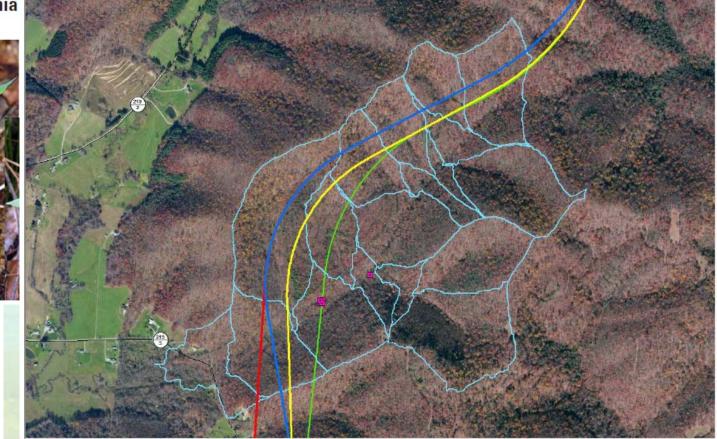
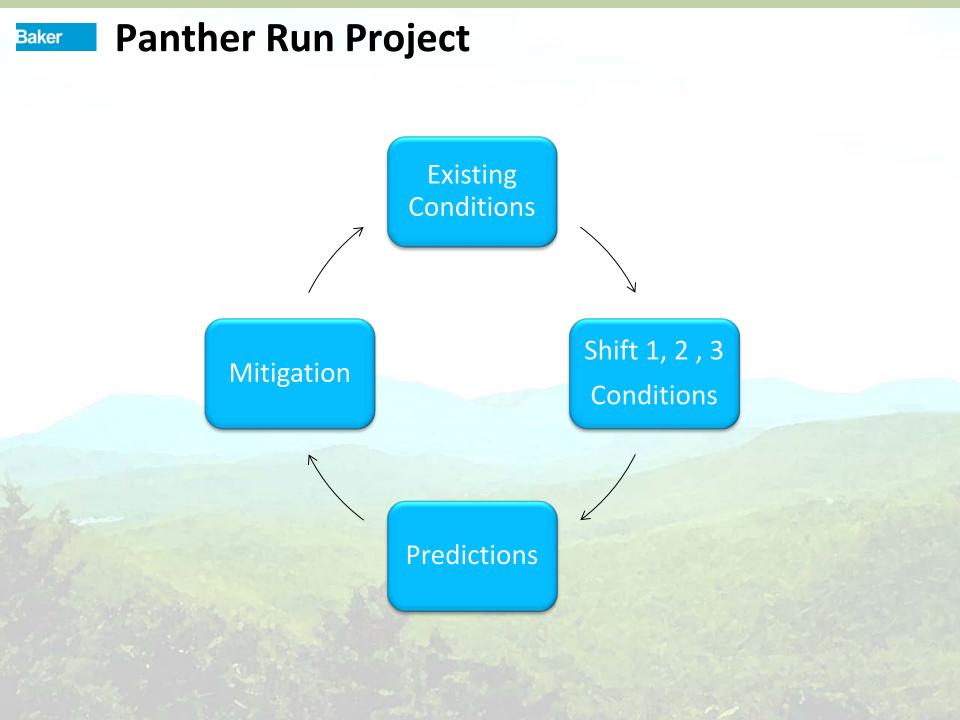
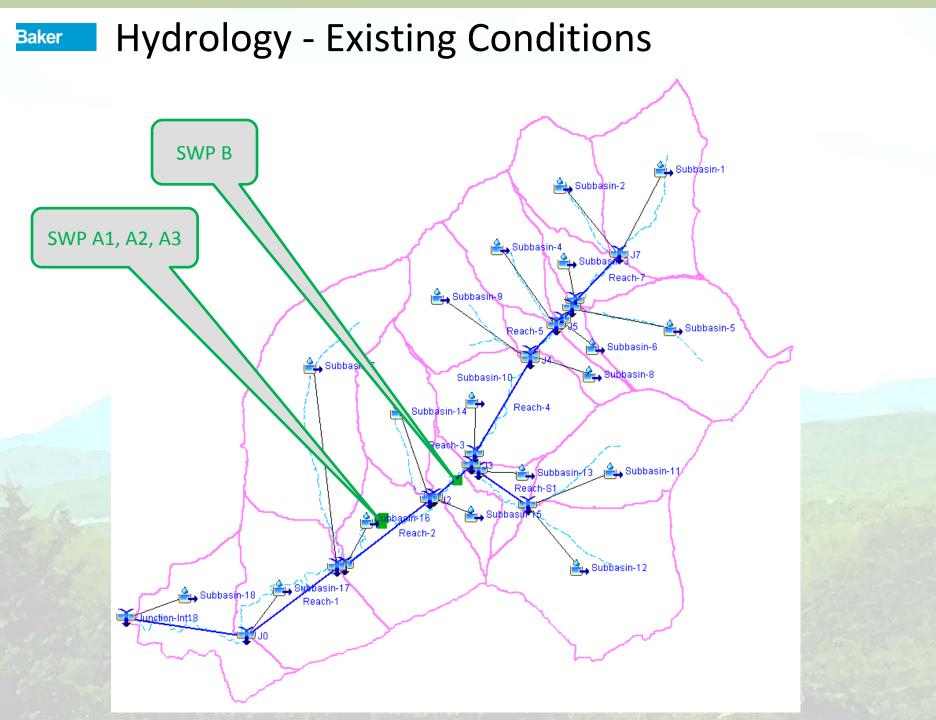


Figure 2: SWP locations relative to proposed highway alignments

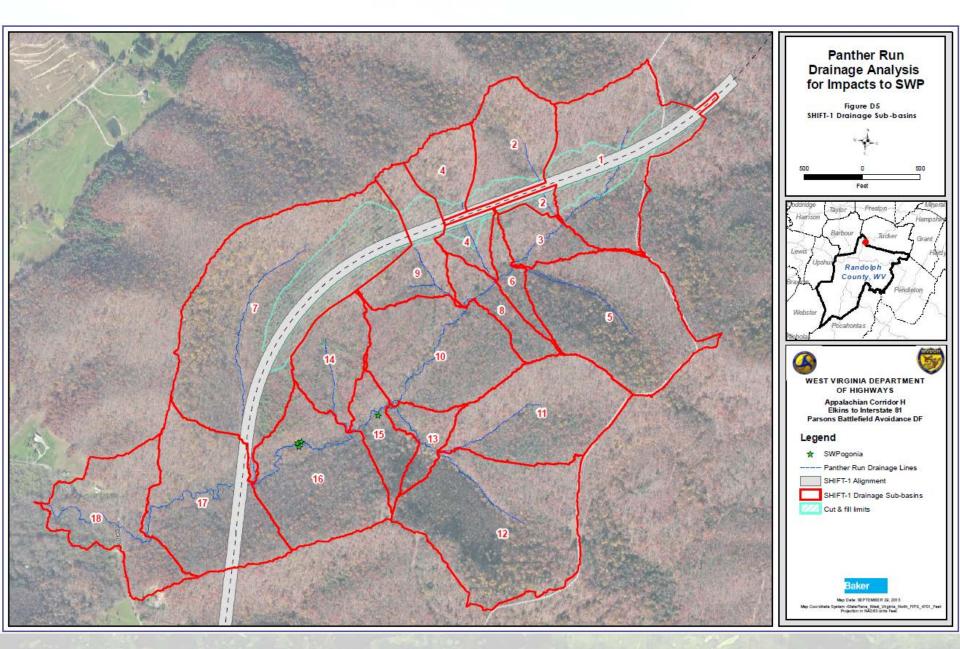
Baker Purpose

Panther Run Watershed Hydrologic & Hydraulic analyses performed to:

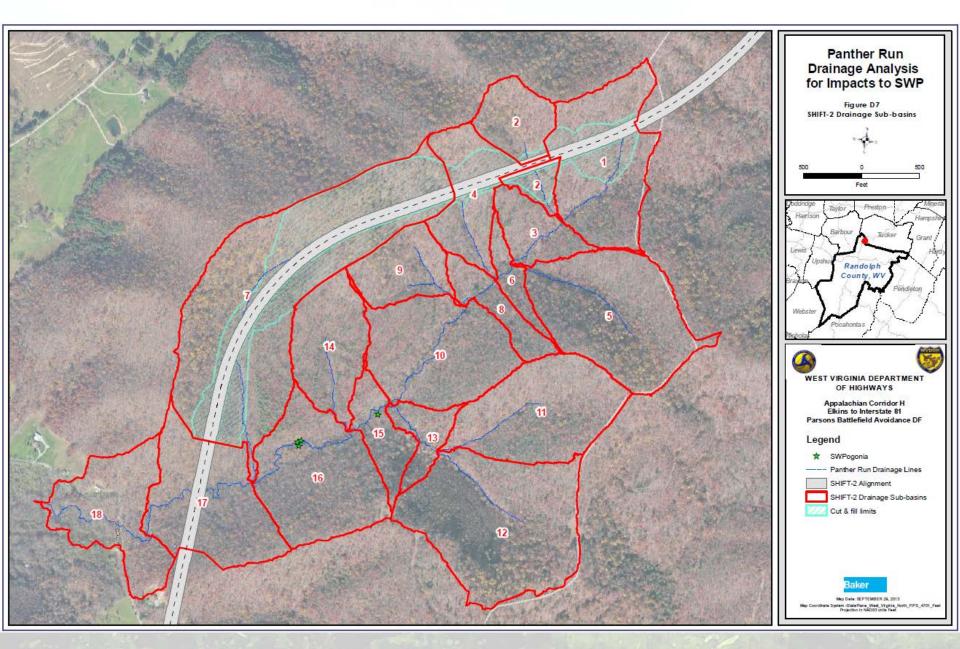

- Establish existing (baseline) hydrologic & hydraulic (H&H) conditions at SWP Locations
- 2. Establish proposed conditions due to roadway construction
- 3. Predict changes due to the proposed roadway construction
- 4. Conceptualize mitigation measures and demonstrate their effectiveness

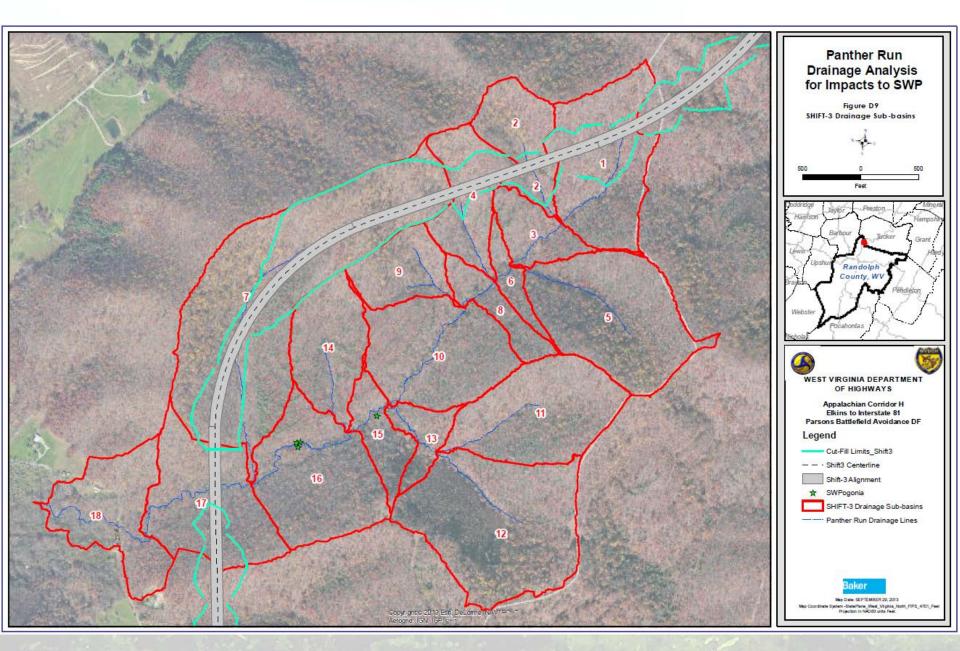

H&H Models developed to predict changes in key H&H variables

- Peak Discharges
- WSEL or Stage
- Flow Depth
- Velocities
- Shear Stress
- Water Exposure Analysis



Example Hydrograph (Peak Discharge)




Baker Hydrology - Shift 1

Baker Hydrology - Shift 2

Baker Hydrology - Shift 3

Historical Gage Data

Peak-FQ Bulletin 17B Analysis of Gages in Surrounding Areas

Baker

PeakFQ Gage Analysis Summary

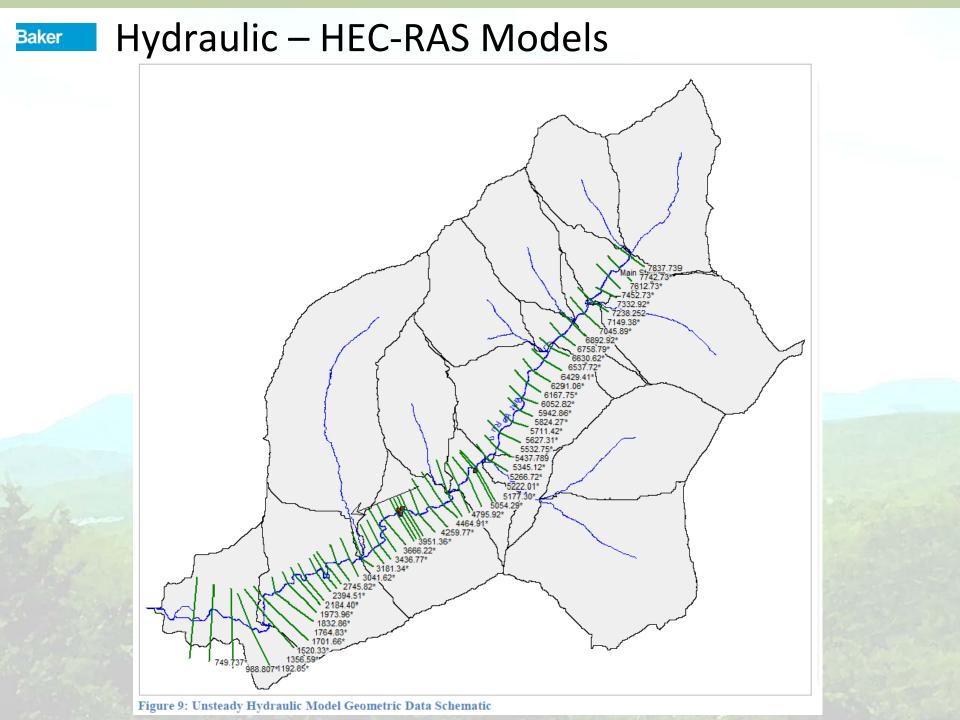
Randolph County	ANNUAL	EXPECTED	271 Sq. Miles DA	
	EXCEEDANCE	BULL.17B	Occurrence	9
Event	PROBABILITY	ESTIMATE	All Data (60-yrs)	1994-2004
Year	AEP	cfs	Times	Times
1.005	0.995	3791	60	11
1.010	0.99	3980	60	11
1.053	0.95	4618	57	11
1.111	0.9	5048	55	11
1.250	0.8	5678	46	10
1.500	0.6667	6399	40	9
2.00	0.5	7332	31	8
2.33	0.4292	7783	28	8
5.00	0.2	9882	12	2
10.00	0.1	11760	4	1
25.00	0.04	14350	2	1
50.00	0.02	16450	1	0
100.00	0.01	18690	1	0
200.00	0.005	21110	1	0
500.00	0.002	24610	0	0

ELKINS TYGART RIVER GAGE BULLETIN 17 B ANALYSIS

BELINGTON, TYGART RIVER GAGE BULLETIN 17 B ANALYSIS

Barbour County	ANNUAL	EXPECTED	406 Sq. Miles DA	
	EXCEEDANCE	BULL.17B	Occurren	ce
Event	PROBABILITY	ESTIMATE	All Data (104-yrs)	1994-2011
Year	AEP	cfs	Times	Times
1.005	0.995	4995	104	18
1.010	0.99	5310	103	18
1.053	0.95	6327	98	18
1.111	0.9	6981	93	18
1.250	0.8	7902	86	15
1.500	0.6667	8914	73	13
2.00	0.5	10170	55	9
2.33	0.4292	10750	43	9
5.00	0.2	13340	20	4
10.00	0.1	15500	10	2
25.00	0.04	18310	4	2
50.00	0.02	20460	2	1
100.00	0.01	22660	1	0
200.00	0.005	24930	1	0
500.00	0.002	28060	1	0

BOWDEN, SHAVERS FORK GAGE BULLETIN 17 B ANALYSIS


Randolph County	ANNUAL	EXPECTED	151 Sq. Miles DA	
	EXCEEDANCE	BULL.17B	Occurrence	è
Event	PROBABILITY	ESTIMATE	All Data (22-yrs)	1998-2011
Year	AEP	cfs	Times	Times
1.005	0.995	4287	22	14
1.010	0.99	4685	22	14
1.053	0.95	6027	21	14
1.111	0.9	6933	19	12
1.250	0.8	8257	16	12
1.50	0.6667	9773	15	12
2.00	0.5	11730	11	9
2.33	0.4292	12670	10	9
5.00	0.2	17030	5	4
10.00	0.1	20880	3	3
25.00	0.04	26130	1	1
50.00	0.02	30320	0	0
100.00	0.01	34740	0	0
200.00	0.005	39450	0	0
500.00	0.002	46130	0	0

PARSONS CHEAT RIVER GAGE BULLETIN 17 B ANALYSIS

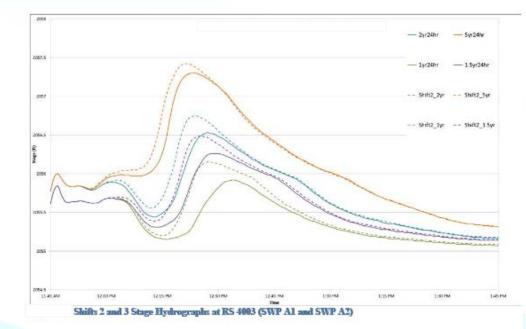
Tucker County	ANNUAL	EXPECTED	722 Sq. Miles DA	
	EXCEEDANCE	BULL.17B	Occurrence	
Event	PROBABILITY	ESTIMATE	All Data (99-yrs)	1994-2012
Year	AEP	cfs	Times	Times
1.005	0.995	11920	97	19
1.010	0.99	12480	97	19
1.053	0.95	14530	96	19
1.111	0.9	16030	91	19
1.250	0.8	18390	81	19
1.50	0.6667	21300	67	18
2.00	0.5	25370	53	13
2.33	0.4292	27440	46	10
5.00	0.2	38040	16	6
10.00	0.1	48730	7	3
25.00	0.04	65260	4	2
50.00	0.02	80090	3	1
100.00	0.01	97340	1	0
200.00	0.005	117400	1	0
500.00	0.002	149200	1	0

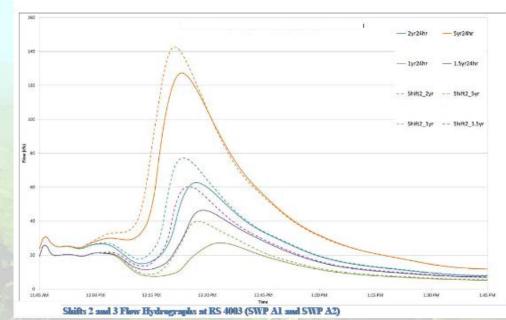
Hydraulic Analysis

HEC-RAS Steady and Unsteady Models

Hydraulic Analysis

Predicted Changes in Key Hydraulic Variables at SWP Locations


Baker Predicted Changes at SWP A1


<u>SWP A1</u>	Condition/Event	1-yr	1.5-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
Peak Discharge	Ex Cond	27.22	46.45	62.76	127.3	258.28	383.3	483.2	602.98	853.4
(cfs)	Shift 1	52.35	75.23	93.43	163.9	301.26	427.3	526.4	643.53	891.39
(cis)	Shift 2 and 3	39.85	60.41	77.21	142.5	273.81	399.1	496	611.24	855.68
	Ex Cond	0	0	0.14	0.91	1.85	2.4	2.81	3.11	3.72
Flow Depth (ft)	Shift 1	0	0.33	0.6	1.2	2.04	2.6	2.92	3.21	3.8
	Shift 2 and 3	0	0.1	0.36	1.04	1.92	2.47	2.84	3.13	3.72
	Ex Cond	0	0	0.7	1	1.39	1.68	1.81	2.03	2.36
Velocity (ft/s)	Shift 1	0	0.81	0.89	1.14	1.51	1.74	1.9	2.09	2.4
	Shift 2 and 3	0	0.68	0.82	1.07	1.43	1.7	1.84	2.04	2.36
Shear Stress	Ex Cond	0	0	0.26	0.42	0.65	0.88	0.98	1.19	1.51
(lb/sq ft)	Shift 1	0	0.3	0.33	0.5	0.74	0.92	1.06	1.25	1.56
	Shift 2 and 3	0	0.25	0.31	0.45	0.68	0.9	1	1.2	1.52

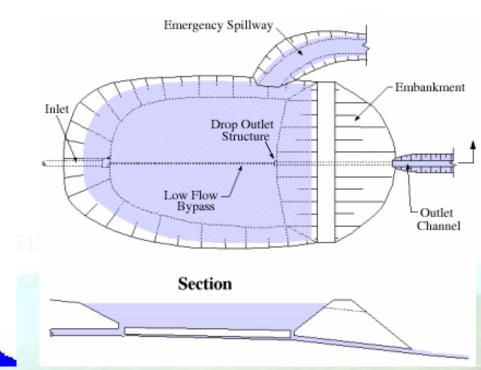
Baker SWP A1 and SWP A2 Hydrographs

Comparison of Shift 2/3 and Existing Hydrographs for

1, 1.5, 2, 5-yr events

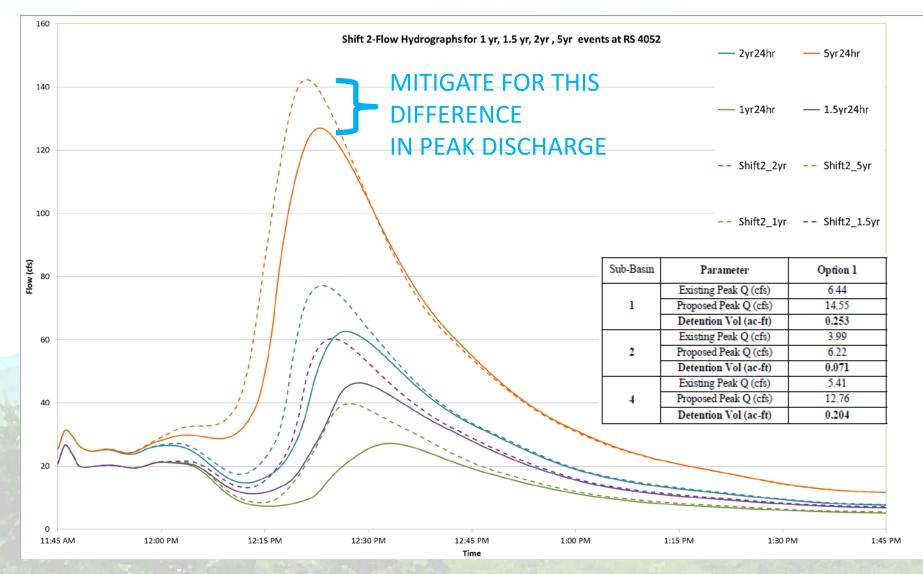
Mitigation of Predicted Changes

Shift 3 Selected for Mitigation and 1.5-year event Identified for Mitigation – Channel forming, Stream Stabilizing flow event


Mitigation Strategies Considered:

- Offline detention
- Inline detention
- Inlet re-routing to allocate additional roadway drainage areas to trunk lines that discharge further downstream of plant location
- Retention
- Bio-retention

Baker Inline Detention – Modeled Option


Normal stream flow passes through.

Excess water remains in detention basin.

Mitigation - Detention Storage

Baker

Baker Predicted Changes (at SWP A1) and Mitigation

<u>SWP A1</u>	Condition/Event	1-yr	1.5-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
	Ex Cond	27.22	46.45	62.76	127.3	258.28	383.3	483.2	602.98	853.4
Peak Discharge	Shift 1	52.35	75.23	93.43	163.9	301.26	427.3	526.4	643.53	891.39
(cfs)	Shift 2 and 3	39.85	60.41	77.21	142.5	273.81	399.1	496	611.24	855.68
	With Mitigation	29.26	46.11	60	125	269.47	398.7	495.9	611.1	855.37
	Ex Cond	0	0	0.14	0.91	1.85	2.4	2.81	3.11	3.72
Flow Depth (ft)	Shift 1	0	0.33	0.6	1.2	2.04	2.6	2.92	3.21	3.8
riow Deptil (It)	Shift 2 and 3	0	0.1	0.36	1.04	1.92	2.47	2.84	3.13	3.72
	With Mitigation	0	0	0.09	0.92	1.9	2.47	2.84	3.13	3.72
	Ex Cond	0	0	0.7	1	1.39	1.68	1.81	2.03	2.36
Velocity (ft/s)	Shift 1	0	0.81	0.89	1.14	1.51	1.74	1.9	2.09	2.4
velocity (it/s)	Shift 2 and 3	0	0.68	0.82	1.07	1.43	1.7	1.84	2.04	2.36
	With Mitigation	0	0	0.68	0.99	1.42	1.7	1.84	2.04	2.36
	Ex Cond	0	0	0.26	0.42	0.65	0.88	0.98	1.19	1.51
Shear Stress	Shift 1	0	0.3	0.33	0.5	0.74	0.92	1.06	1.25	1.56
(lb/sq ft)	Shift 2 and 3	0	0.25	0.31	0.45	0.68	0.9	1	1.2	1.52
	With Mitigation	0	0	0.25	0.41	0.67	0.9	1	1.2	1.52

Mitigation of Shift 2/3

Baker Predicted Changes (at SWP A1) and Mitigation

SWP A1	Condition/Event	1-yr	1.5-yr	2-yr	5-yr	10-y r	25-yr	50-yr	100-yr	500-yr
Peak Discharge	Ex Cond	27.22	46.45	62.76	127.3	258.28	383.3	483.2	602.98	853.4
(cfs)	Shift 3	37.56	57.53	73.74	136.3	259.77	376.6	468.5	579.35	807.89
(cis)	With Mitigation	29.57	46.18	59.87	113.6	237.84	363.9	456	564.32	786.7
	Ex Cond	0	0	0.14	0.91	1.85	2.4	2.81	3.11	3.72
Flow Depth (ft)	Shift 3	0	0.05	0.3	0.99	1.86	2.38	2.77	3.06	3.61
	With Mitigation	0	0	0.09	0.8	1.74	2.32	2.72	3.02	3.56
	Ex Cond	0	0	0.7	1	1.39	1.68	1.81	2.03	2.36
Velocity (ft/s)	Shift 3	-	0.68	0.8	1.04	1.39	1.67	1.79	1.99	2.31
	With Mitigation	0	0	0.68	0.94	1.33	1.65	1.77	1.97	2.28
Shear Stress	Ex Cond	0	0	0.26	0.42	0.65	0.88	0.98	1.19	1.51
(lb/sq ft)	Shift 3		0.25	0.3	0.44	0.65	0.87	0.95	1.15	1.46
	With Mitigation	0	0	0.25	0.38	0.61	0.85	0.94	1.12	1.44

Baker SWP A1 and SWP A2 - 1.5yr Hydrographs

Water Exposure Duration Analysis at SWP

Baker Water Exposure Times at SWP in Minutes

Event	Existing	Shift 1	Shift 2	Shift 3	With Mitigation
	(min)	(min)	(min)	(min)	(min)
1-year	0	0	0	0	0
1.5-year	0	11	4	0	0
2-year	7	17	13	12	5
5-year	29	33	30	29	29
10-year	50	52	52	49	49
100-year	74	73	72	72	72

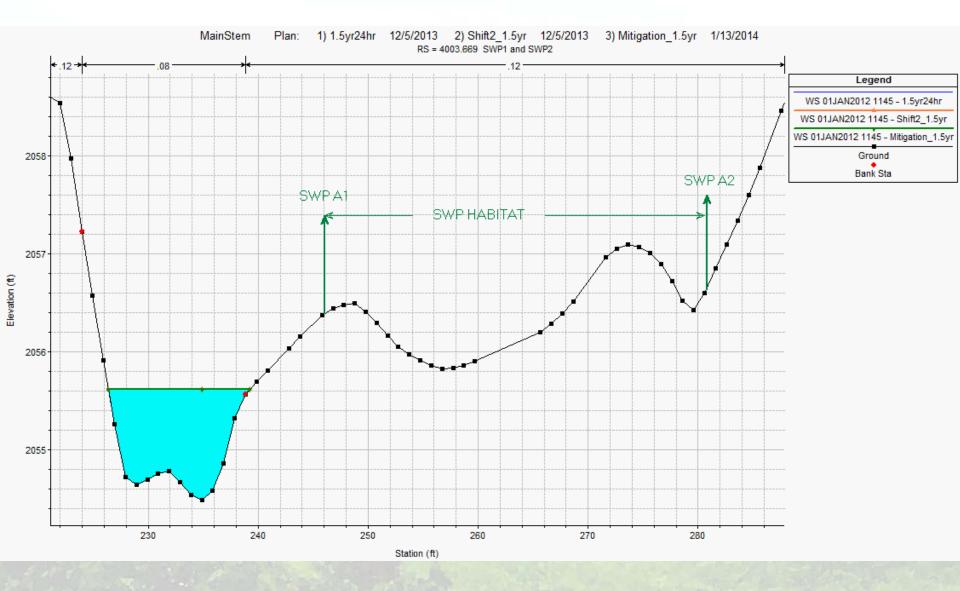
Water Exposure Duration (Minutes) at SWP A1

Water Exposure Duration (Minutes) at SWP A2

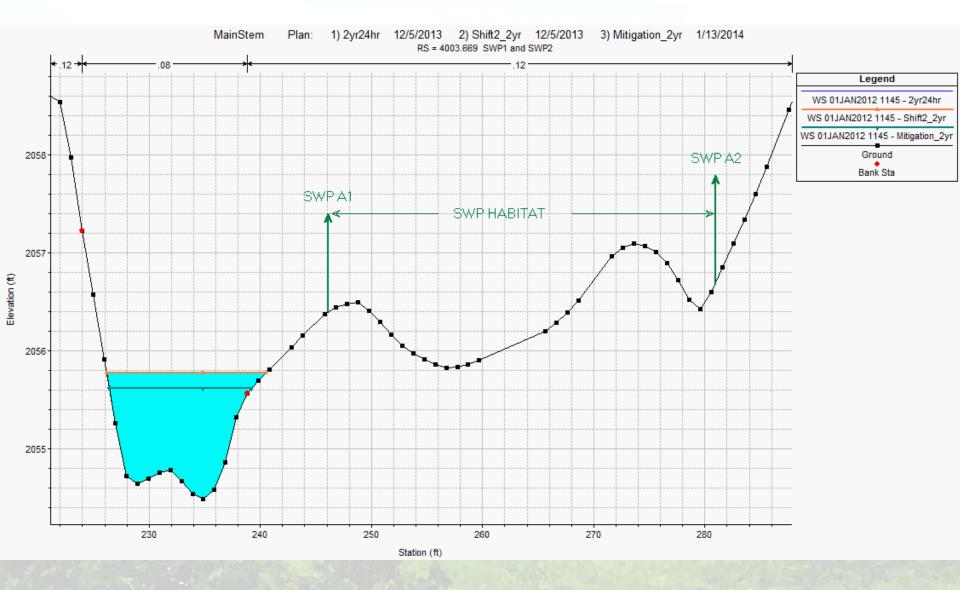
Event	Existing	Shift 1	Shift 2	Shift 3	With Mitigation
	(min)	(min)	(min)	(min)	(min)
1-year	0	0	0	0	0
1.5-year	0	0	0	0	0
2-year	0	7	0	0	0
5-year	18	22	19	18	17
10-year	38	41	39	38	37
100-year	63	62	61	61	61

Baker Water Exposure Times at SWP in Minutes

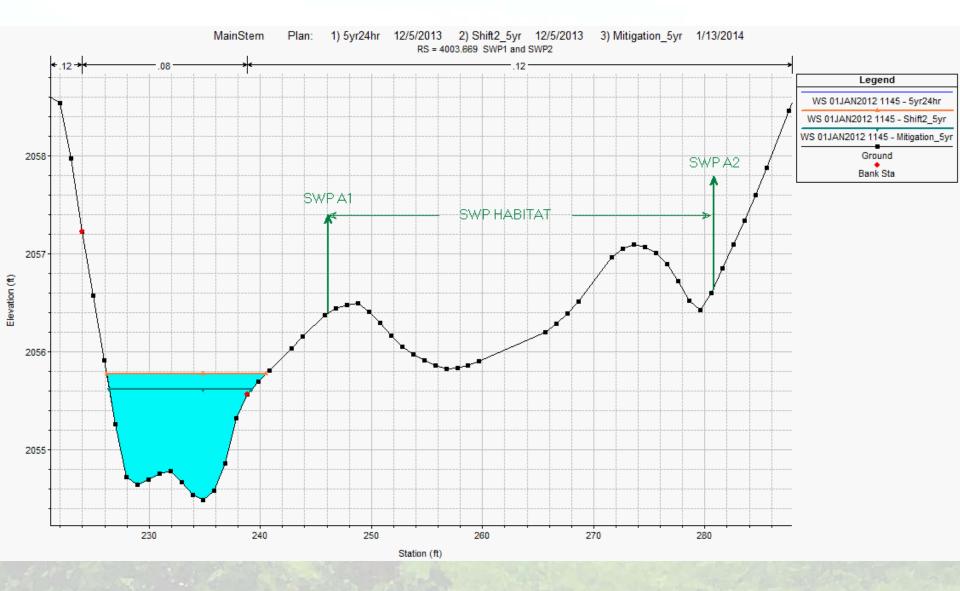
Event	Existing	Shift 1	Shift 2	Shift 3	With Mitigation
	(min)	(min)	(min)	(min)	(min)
1-year	0	0	0	0	0
1.5-year	0	2	0	0	0
2-year	0	11	5	0	0
5-year	21	25	23	21	22
10-year	42	44	43	41	41
100-year	66	66	64	64	64

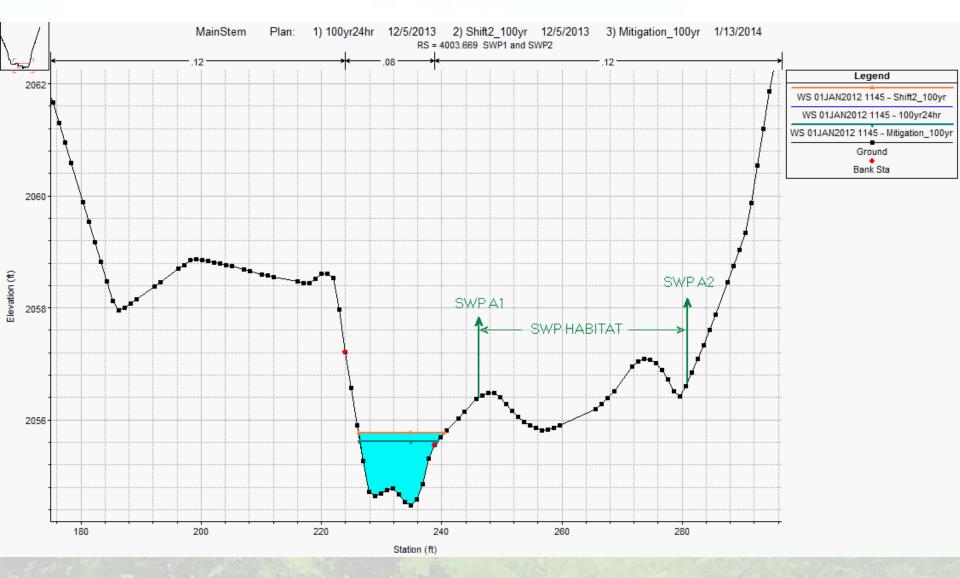

Water Exposure Duration (Minutes) at SWP A3

Water Exposure Duration (Minutes) at SWP B

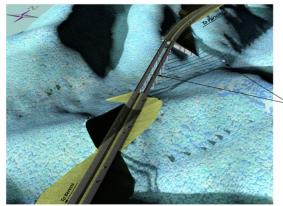

Event	Existing	Shift 1	Shift 2	Shift 3	With Mitigation
	(min)	(min)	(min)	(min)	(min)
1-year	0	0	0	0	0
1.5-year	0	8	0	0	0
2-year	0	13	8	7	0
5-year	22	28	25	23	23
10-year	42	44	42	41	41
100-year	66	66	64	64	65

Water Surface Elevation (WSEL) Animations at SWP A1 and SWP A2 (1.5, 2, 5, 100-year events)

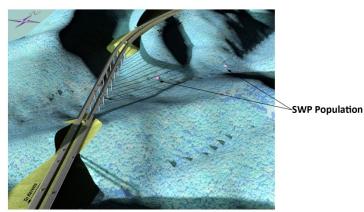

Baker 1.5-yr WSEL Animation at SWP A1, and A2


Baker 2-yr WSEL Animation at SWP A1 and A2

Baker 5-yr WSEL Animation at SWP A1 and A2

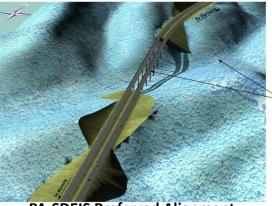


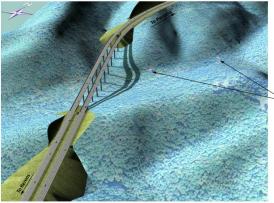
Baker 100-yr WSEL Animation at SWP A1 and A2



Press Park

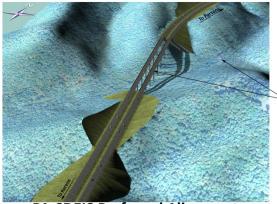
Shadow Modeling Study at SWP


PA-SDEIS Preferred Alignment

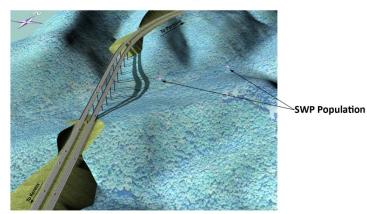

Shift 1 Alignment

SWP Population

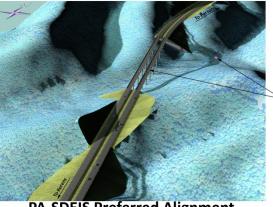
PA-SDEIS Preferred Alignment


SWP Population

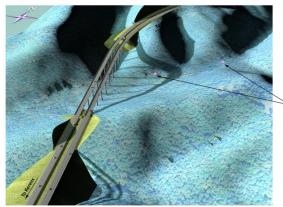
SWP Population


Shift 1 Alignment

SWP Population


PA-SDEIS Preferred Alignment

Shift 1 Alignment



SWP Population

SWP Population

PA-SDEIS Preferred Alignment

SWP Population

Shift 1 Alignment

SWP Population

Shadow Study – Original Alignment – March to October

PA SDEIS Alignment March thru October

Shadow Study – Shift 3 Alignment – March to October

Panther Run Storm Water Pollution Prevention Plan (SWPPP)

Potential Strategies

Baker General Management Controls

Critical Source Control Elements to prevent rainfall and runoff from contacting potential pollutants

Silt Fence

Rock Berm

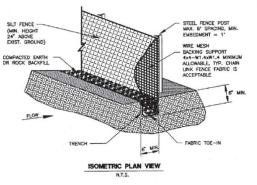
Site Management – Good Housekeeping

- Inventory on-site products and store chemicals safely
- Cover and berm stockpiles

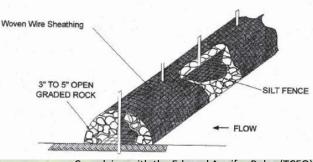
Non-storm Water Management

- Eliminate non-stormwater (SW) un-permitted discharge
- Minimize allowable non-SW discharge

Erosion and Sediment Controls


- Referenced in SWPPP Maps
- Limit disturbance of vegetation and topsoil where possible (perimeter controls)

 Using SWPPP development and BMP guidance documents from: California Stormwater Quality Association (CASQA)


TCEQ Edwards Aquifer Guidance

Dr. Michael Barrett (University of Texas)

California Department of Transportation

Complying with the Edward Aquifer Rules (TCEQ)

Complying with the Edward Aquifer Rules (TCEQ)

Baker Structural BMPs

Project could incorporate the most effective controls to protect sensitive habitat, including consideration of:

Pre-Construction BMPs:

- Silt Fence
- Check Dams
- Fiber Rolls
- Storm Drain Inlet Protection

Post-Construction BMPs:

- Detention Ponds
- Infiltration Basin / Trench
- Retention / Irrigation
- Wet Basins
- Vegetated Strips and Swales
- **Bio-retention**
- Media Filter

Media Filter

Design Considerations

TC-40

- Aesthetics
- Hydraulic Head

Description

Stormwater media filters are usually two-chambered including a pretreatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber. There are a number of design variations including the Austin sand filter, Delaware sind filter, and multi-chambered treatment train (MCTT).

California Experience

Caltrans constructed and monitored five Austin sand filters, two MCTTs, and one Delaware design in southern California. Pollutant removal was very similar for each of the designs; however operational and maintenance aspects were quite different. The Delaware filter and MCTT maintain permanent pools and consequently mosquito management was a critical issue, while the Austin style which is designed to empty completely between storms was less affected. Removal of the top few inches of sand was required at 3 of the Austin filters and the Delaware filter during the third year of operation; consequently, sizing of the filter bed is a critical design factor for establishing maintenance frequency.

Advantages

- Relatively bigh pollutant removal, especially for sediment and associated pollutants.
- Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency relationships resulting from the increase of impervious cover in a watershed.

Limitations

Baker Structural BMPs

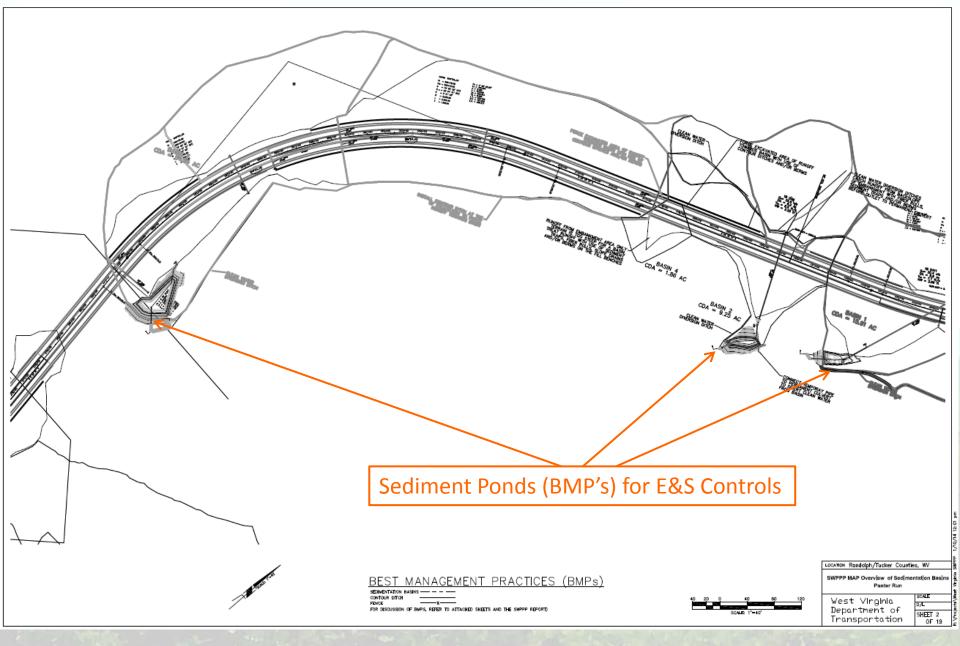
Source: Caltrans

Source: Caltrans

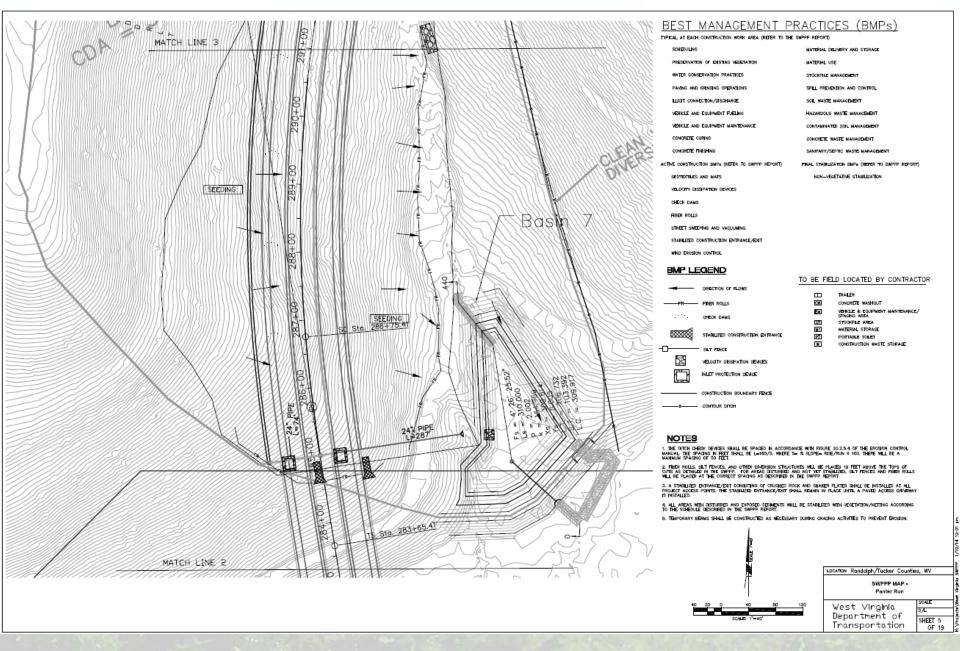
Media Filter

Vegetated Swale

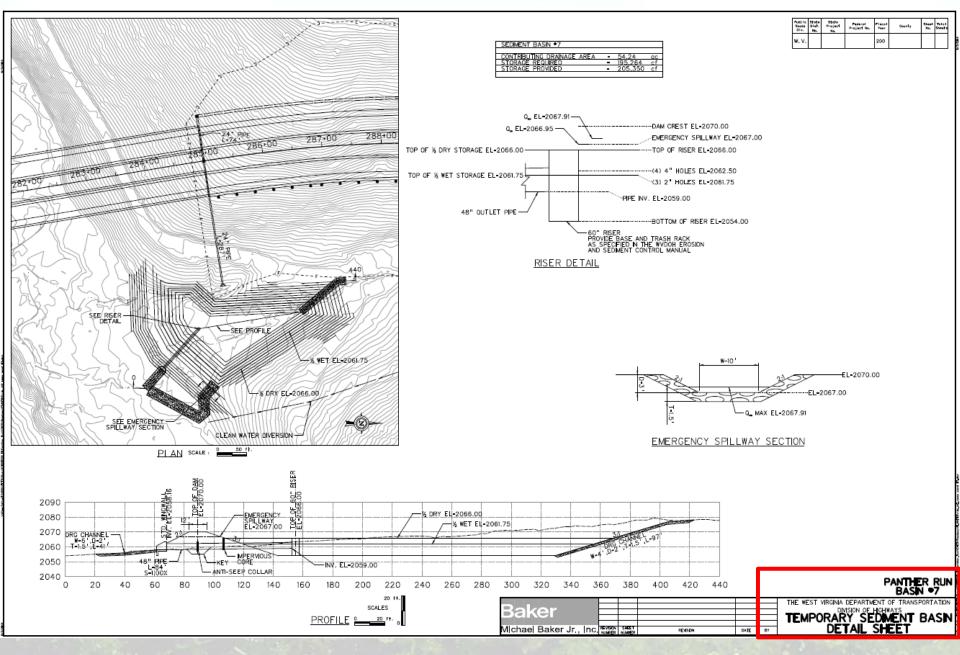
Source: Stanard et al. (2008)



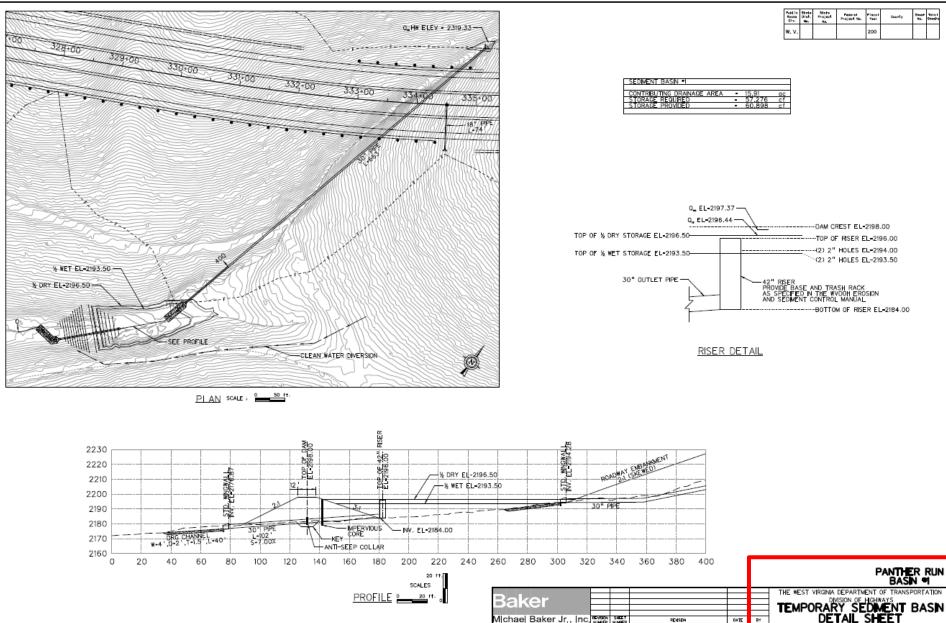
Source: Caltrans


Sand Filter

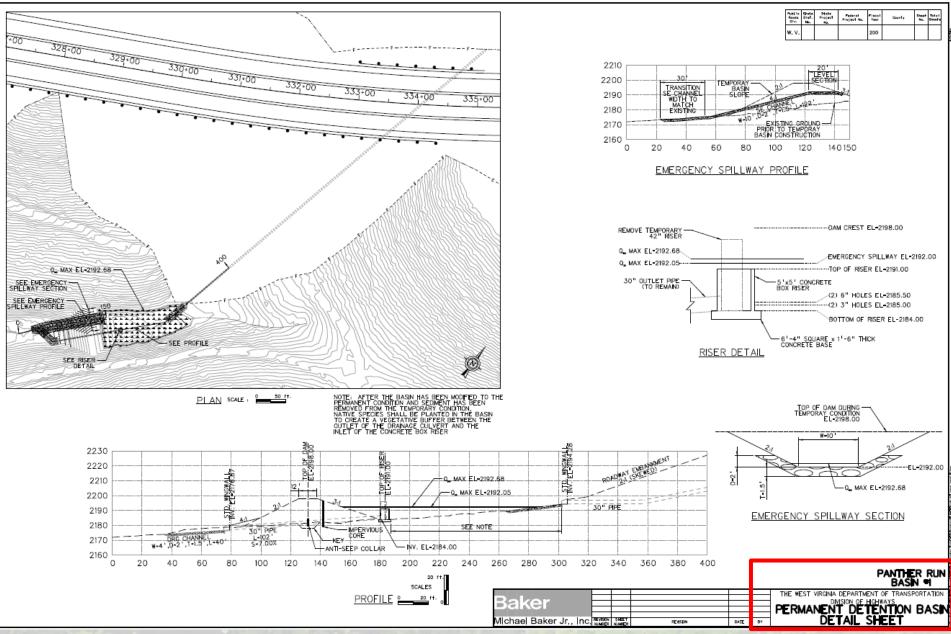
Shift 3 BMP's Conceptual Plan - Overview Map


Baker

Shift 3 BMP's Conceptual Plan – Basin 7



Shift 3 BMP's Conceptual Plan – Basin 7



Shift 3 BMP's Conceptual Plan – Basin 1

Baker

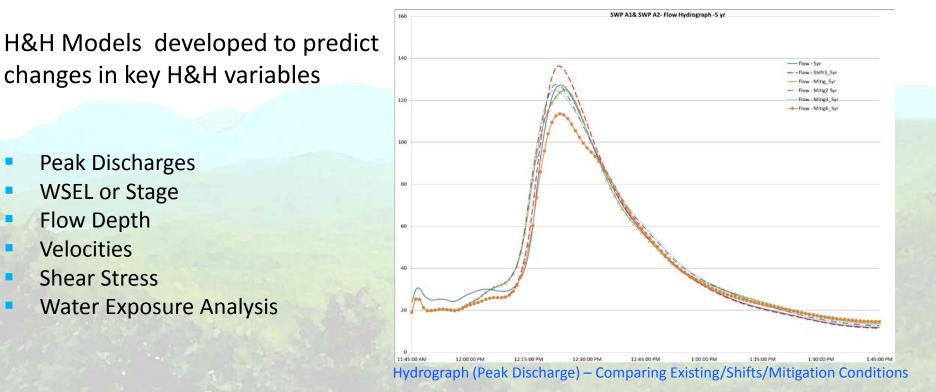
Shift 3 BMP's Conceptual Plan – Basin 1

7.15

Baker Modeling Effort in Numbers

Hydrology- HEC-HMS :

- **45** hydrologic elements (sub-basins, junctions, reaches, reservoirs) in hydrologic model.
- **8,496** Flow hydrographs generated in the HMS.
- 450MB output file. (HEC-DSS)


Hydraulics- HEC-RAS Unsteady

- 82 Unsteady Hydraulic model runs
- 97MB at 4.5 hours when the runoff from the hypothetical 24-hr storm event is at its peak.
- 500MB for 24 hour time period would result in each output file exceeding
- 8GB plus Output data

Baker Summary and Discussion

Panther Run Watershed H&H analyses performed to:

- 1. Established existing hydrologic & hydraulic conditions at SWP Locations
- 2. Established proposed conditions due to roadway construction
- 3. Predicted changes due to the proposed roadway construction
- 4. Conceptualized mitigation measures and Demonstrated their effectiveness

Baker Project Team

Presenters – Baker/WVDOH Key Team Members

Mohiuddin Shaik P.E., GISP, CFM Water Resources Engineering Manager Charleston, WV Email: mshaik@mbakercorp.com

Brigham S. Ash, E.I. Highway Engineer Trainee WVDOH, H&D Unit Email: Brigham.S.Ash@wv.gov

Team Members:

Douglas W. Kirk – WVDOH, Hydraulic & Drainage Unit Lovell R. Facemire – WVDOH, Environmental Section Lawrence D. Gale – Baker, Project Manager Mohamed Bagha – Baker, H&H Engineer