Washington State Mudslide

Casey Kramer, PE WSDOT State Hydraulics Engineer

2014 National Hydraulic Engineering Conference Iowa City , IA August 22nd, 2014

Washington State Department of Transportation

Vicinity Map

121*52'30"W

Haugerud, R. Report 2014-1065

Pre-Landslide Topography

Image courtesy of S. Schilling

Post-Landslide Topography

Image courtesy of S. Schilling

March 24th, 2014

April 1st, 2014

April 14th, 2014

May 1st, 2014

July 1st, 2014

Washington State Department of Transportation

USGS Real-time and NWRFC Forecast Data

LiDAR 4/6/2014

Current Merged Bathymetry and LiDAR

BCI Markup of excavation plan

Approximate Difference in Ground and Water Surface Elevation (Based on FEMA Preliminary Model)

Existing Potential Flow Paths

Q = 5000 cfs – Water Surface Elevation

Washington State Department of Transportation

Q = 5000 cfs - Velocity

Q = 5000 cfs - Velocity

Q = 20,000 cfs (~2-YR)– Water Surface Elevation

Q = 20,000 cfs (~2-YR)– Depth

Q = 20,000 cfs (~2-YR) - Velocity

Q = 20,000 cfs (~2-YR) - Velocity

Q = 26,000 cfs (~10-YR) – Water Surface Elevation

Q = 26,000 cfs (~10-YR)– Depth

Q = 30,000 cfs (~25-YR) – Depth

Q = 30,000 cfs (~25-YR) - Velocity

Q = 32,000 cfs (~50-YR) Existing Depth

Q = 32,000 cfs (~50-YR) Existing Velocity

Q = 34,000 cfs (~100-YR) Existing Depth

Q = 34,000 cfs (~100-YR) Existing Velocity

Use historic "Rowan" slide to inform what may happen through new slide

Ē

Potential Future Water Surface Elevation Sensitivity Analysis

(Analysis Conducted by Corps, based on FEMA Preliminary Model)

North Alignment - 1% Flood Event^									
# Dre Slide Deet Slide		Short Term Measures Runs for Pilot Channel Excavation			Long Term Measure Runs for Modifications to Existing (North				
	Pre-Slide	Post-Slide		by I iviay	i		Alignment	Channel	
						Base Width of	Base Width of	Base Width of	Base Width of
	FEMA					150 Feet, 2:1	125 Feet, 2:1	100 Feet, 2:1	75 Feet, 2:1
1% Flood Event	Hydraulic					Side Slopes, and	Side Slopes, and	Side Slopes, and	Side Slopes,
(100-year: 34,103	Model with	Baseline: Using	Extend Excavation of	Extend Pilot and	Extend Pilot,	Elevation	Elevation	Elevation	and Elevation
cfs)	2013 LiDAR	Observed Data	20' Base Width Pilot	Increase Base	Increase Width to	(variable) Equal	(variable) Equal	(variable) Equal	(variable) Equal
	and no	on/around	Channel U/S	Width to 40'	40' and Invert to	to PreSlide	to PreSlide	to PreSlide	to PreSlide
	Bathymetry	4/23/2014	Through Debris Field	Throughout	270' Throughout*	Conditions**	Conditions	Conditions	Conditions
C-Post WSF									
010001002	285.7	300.8	300.8	300.3	300.3	287.9	289.0	290.7	293.4
Upstream End of									
Slide Reach WSE									
(Pool /Pilot									
Transition Zone)	279.6	300.7	300.7	300.3	300.2	282.9	286.5	290.0	293.1
Midway Through									
Slide Reach WSE	269.3	285.1	285.1	285.1	285.1	273.5	275.6	278.0	280.7
Downstream End									
of Slide Reach									
WSE	265.5	266.5	266.5	266.5	266.5	265.3	265.5	265.8	266.0
Cut Volume to Match Existing Channel to Specified Geometry (Cu. Yd)				600000	462000	221000	210000		
						600000	463000	331000	210000

5/1/14 Channel Widths

Department of Transportation

Natural Channel Widening

4/28/14 – Flow = ~1130 cfs WSE = ~ 278.4 ft

Excavation stopped on 4/30/14

5/1/14 - Flow = ~1100 cfs WSE = ~276.7 ft 5/7/14 - Flow = ~1400 cfs WSE = ~276.1 ft

Natural Channel Widening

5/1/14 - Flow = ~1100 cfs WSE = ~276.7 ft 5/7/14 - Flow = ~1400 cfs WSE = ~276.1 ft

5/24/14 - Flow = ~1100 cfs WSE = ~275.3 ft 6/29/14 - Flow = ~1100 cfs WSE = ~275.4 ft

Water Surface Elevations and Potential Roadway Profiles

Legend 4-22-2014 Results								
Flow West					East Side			
Event	Line	Length	West Elev.	East Elev.	Length	Elev.		
2-Year		2405 ft	262.0 ft	294.0 ft	4614 ft	297.6 ft		
10-Year		2455 ft	262.2 ft	296.3 ft	5166 ft	299.5 ft		
25-Year		2496 ft	263.0 ft	297.0 ft	5362 ft	300.5 ft		
100-Year		2542 ft	263.9 ft	297.3 ft	5492 ft	301.3 ft		

	Legend 5-5-2014 Results								
Flow		West Side			East Side				
Event	Line	Length	West Elev.	East Elev.	Length	West Elev.	East Elev.		
2-Year		N/A	N/A	N/A	3019 ft	291.8 ft	291.9 ft		
10-Year	I	N/A	N/A	N/A	4018 ft	294.7 ft	294.8 ft		
25-Year		N/A	N/A	N/A	4364 ft	296.7 ft	296.7 ft		
50-Year		2437 ft	262.5 ft	294.6 ft	4589 ft	297.4 ft	297.5 ft		
100-Year		2480 ft	262.9 ft	296.2 ft	4813 ft	298.1 ft	298.1 ft		

Potential Alternatives and Associated Benefits and Risks

Potential Channel Migration Risk

Historic Aerial

1933 Aerial

Historic Channel Migration

Potential Channel Migration or Remobilization Risk

Washington State Department of Transportation

Monitoring Downstream Bridges – Downstream Aggradation and Potential Effects on Downstream Infrastructure

Questions?

Casey Kramer State Hydraulic Engineer WSDOT Development Division (360) 705-7262 kramerc@wsdot.wa.gov

