Conference Proceeding

Fast MicroSleep and Yawning Detections to Assess Driver’s Vigilance Level

  • Nawal Alioua (Mohammed V-Agdal University, Rabat, Morocco)
  • Aouatif Amine (Mohammed V-Agdal University, Rabat, Morocco)
  • Mohammed Rziza (Mohammed V-Agdal University, Rabat, Morocco)
  • Driss Aboutajdine (Mohammed V-Agdal University, Rabat, Morocco)


Driver hypovigilance, often caused by fatigue and/or drowsiness, receives increasing attention in the last years; especially after it became evident that hypovigilance is a one of the major factor causing traffic accidents. Monitoring and detecting driver hypovigilance could contribute significantly to improve road traffic safety. This paper proposes fast methods to identify drowsiness and fatigue using respectively microsleep and yawning detections. In this study, the proposed scheme begins by a face detection using local Successive Mean Quantization Transform (SMQT) features and split up Sparse Network of Winnows (SNoW) classifier. After performing face detection, the novel approach for eye/mouth detection, based on Circular Hough Transform (CHT), is applied on eyes and mouth extracted regions. Our proposed methods works in real-time and yield a high detection rates whether for drowsiness or fatigue detections.

How to Cite:

Alioua, N. & Amine, A. & Rziza, M. & Aboutajdine, D., (2011) “Fast MicroSleep and Yawning Detections to Assess Driver’s Vigilance Level”, Driving Assessment Conference 6(2011), 365-372. doi:

Rights: Copyright © 2011 the author(s)

Download pdf
View PDF



Published on
29 Jun 2011
Peer Reviewed