Conference Proceeding

A Computational Model of Driver Decision Making at an Intersection Controlled by a Traffic Light

Authors
  • Terry Stanard (Klein Associates Inc., Fairborn, OH)
  • William K Hutton (Klein Associates Inc., Fairborn, OH)
  • Walter Warwick (Micro Analysis and Design Boulder, CO)
  • Stacey McIlwaine (Micro Analysis and Design Boulder, CO)
  • Patricia L McDermott (Micro Analysis and Design Boulder, CO)

Abstract

An important challenge associated with driving simulation development is the computational representation of agent behaviors. This paper describes the development of a preliminary autonomous agent behavior model (based on the Recognition-Primed Decision (RPD) model, and Hintzman’s multiple-trace memory model) mimicking human decision making in approaching an intersection controlled by a traffic light. To populate the model, an initial Cognitive Task Analysis was conducted with six drivers to learn the important cues, expectancies, goals, and courses of action associated with traffic light approach. The agent model learns to associate environmental cues (such as traffic light color) with expectancies of upcoming events (like light color change) and appropriate courses of action (such as decelerating). At present, the model is currently being evaluated for its successful representation of the RecognitionPrimed Decision Making process.

How to Cite:

Stanard, T. & Hutton, W. & Warwick, W. & McIlwaine, S. & McDermott, P., (2001) “A Computational Model of Driver Decision Making at an Intersection Controlled by a Traffic Light”, Driving Assessment Conference 1(2001), 308-313. doi: https://doi.org/10.17077/drivingassessment.1064

Rights: Copyright © 2001 the author(s)

Downloads:
Download pdf
View PDF

340 Views

134 Downloads

Published on
16 Aug 2001
Peer Reviewed