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Summary: The growing number of fatigue related accidents in recent years has 
become a serious concern. Accidents caused by fatigue, or more precisely 
impaired alertness, in transportation and in mining operations involving heavy 
equipment can lead to substantial damage and loss of life. Preventing such fatigue 
related accidents is universally desirable, but requires techniques for continuously 
estimating and predicting the operator’s alertness state. PERCLOS (percentage of 
eye closure) was introduced as an alertness measure. Some years later, it was 
claimed to be superior in fatigue detection to any other measure, including the 
general Eye-Tracking Signal (ETS) and even EEG recordings. This study will 
show that this is not the case. To put things into the prospective a fair and 
objective comparison between PERCLOS, the general ETS and EEG/EOG has to 
be established. To achieve this purpose, a protocol was established to investigate 
the fatigue detection capabilities of PERCLOS, ETS, and EEG/EOG in a simple 
two class discrimination analysis using an ensemble of Learning Vector 
Quantization (LVQ) networks as a classification tool. Karolinska Sleepiness Scale 
(KSS) and Variation of Lane Deviation (VLD) were used in order to obtain 
independent class labels, whereas KSS provided subjective alertness labels while 
VLD provided objective alertness labels. The general ETS and the fused 
EEG/EOG measures contain substantially greater amounts of fatigue information 
than the PERCLOS measures alone. These conclusions were found to be valid for 
all three commercially available infrared video camera systems that were utilized 
in the study. The data utilized in the discrimination analysis were obtained from 
16 young volunteers who participated in overnight experiments in the real car 
driving simulation lab at the University of Schmalkalden.  

 
INTRODUCTION 
 
Impaired alertness is a concern for any operation that requires sustained vigilance and 
performance. While it is a challenging task to assess operator alertness objectively in the field, it 
is, nonetheless, a vitally important measure for transportation, mining operations and all other 
environments where lapses in attention and cognitive functioning can prove disastrous. A 
driver’s alertness depends on time-of-day due to both homeostatic and circadian factors, on time-
since-sleep (long duration of wakefulness), on time-on-task (prolonged work), inadequate sleep 
quality and quantity, and accumulated lack of sleep. Moreover, there are also psychological 
factors influencing the actual level of alertness, e.g. motivation, stress, and monotony, which is 
believed to play a major role in driving because it is primarily a simple lane-tracking task with a 
low event rate. Driver alertness is not always decreasing monotonically during driving. Rather, it 
shows slow waxing and waning patterns. 
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Many methods and technologies for objective alertness monitoring have been proposed based on 
measures of operator actions, such as PERCLOS, eye activity, and EEG. In 1994 PERCLOS was 
introduced by Wierwille and coworkers as alertness measure. Until the work of Dinges et al. 
several years later, PERCLOS had become only one measure for alertness among several others 
that had emerged. After the publishing of the Dinges report and the extensive promotion of 
PERCLOS using the PVT as a label, PERCLOS became the accepted standard for alertness 
measures. In a publication from the US Department of Transportation it was stated: “Nearly all 
of the technologies showed potential for detecting drowsiness by predicting lapses in at least one 
subject or a subset of subjects, but only PERCLOS correlated highly with PVT lapses both 
within and between subjects. PERCLOS not only had the highest coherence of the technologies 
tested, but correlated more highly with PVT lapses than did the subjects’ ratings of their own 
sleepiness.” This study concluded that PERCLOS performed better than eye blink measure, head 
movement, and even better than EEG. The latter claim that PERCLOS is able to detect 
performance lapses of the PVT better than the EEG should have raised some questions, 
especially since EEG is a direct measure, influenced by mainly cortical and to some degree also 
sub-cortical activities. PERCLOS on the other hand is a more indirect measure of eye and eyelid 
movements and reflects activation, such as a struggle against sleep. 
 
An EEG-based system developed by Lal et al. (2003) was able to detect fatigue with an error rate 
of approximately 10%, which is remarkable considering the complexity of an alertness 
assessment. Similar EEG-based studies were also conducted by Golz et al. (2010) where 
microsleep detection errors in the vicinity of 10% were obtained, using adaptive methods with 
less predefined assumptions. The main drawback with physiological measurements is that 
electrodes have to be attached to the subjects, in this case the driver.  
 
Concurrently, significant progress has been made in the improvement of eye-tracking 
technologies. Several infrared video camera systems are now commercially available (for an 
overview see Edwards et al. 2008). Unfortunately, most of the devices reduce the ETS to the 
PERCLOS measure as alertness assessment tool. This is regrettable because value of the 
information about the alertness state of the operator is lost. This study will show, by means of a 
discriminant analysis, that the fatigue information of the general ETS and in the combined 
EEG/EOG signals is in fact higher than that with PERCLOS.  
 
To keep the concept of the discriminant analysis simple we introduced only two classes, ‘alert’ 
and ‘fatigued’. The objective was to investigate which alertness measure was able to distinguish 
(with the smallest error) between the two classes. It is clear from this concept that any measures 
which contain no fatigue information cannot differentiate between the two classes, meaning the 
error would be in the vicinity of 50%, corresponding a random case. For the first type of labels, 
an orally spoken self-report of sleepiness on a continuous scale, the so-called Karolinska 
Sleepiness Scale (KSS), was recorded every two minutes during driving. The second type of 
labels was determined through analyzing driving performance. In previous studies it was 
particularly found that the Variation of Lane Deviation (VLD) correlates well with alertness and 
attention state of drivers (Pilutti et al. 1999). Learning vector quantization (LVQ) networks were 
used for the discrimination between the ‘alert’ and ‘fatigue’ classes. LVQ is a supervised neural 
network that was introduced by Kohonen in 1990. It allows specification of classes into which 
inputs can be classified.  
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DATA COLLECTION  
 
The study was conducted in the Department of Adaptive Bio-Signal Analysis at the University of 
Applied Sciences in Schmalkalden, Germany. The study consisted of overnight driving 
simulation sessions as shown in Figure 1. Prior to the experiment volunteers were trained in the 
different tests, and were required to wear an activity monitor and to complete a sleep/wake log 
for at least 24 hours prior to the night time driving experiment. The subjects then arrived at the 
lab at 10 pm for wire-up. Logs and activity monitors were checked, retraining was conducted and 
the experiment sessions commenced at 11:30 pm. There were eight experiment sessions, each 
lasting one hour. The last session finished at 8:30 am. Volunteers were given a 1-hour break at 
3:30 am. Each session included a 40-minute driving session, 10-minute CTT performance test, 
and 5-minute PVT. KSS were recorded as brief alertness assessments in 2-minute intervals 
during the driving task, as well as before and after the task. Further variables recorded included 
EEG (Fp1, Fp2, C3, C4, Cz, O1, O2, A1, A2, common average reference) and EOG (vertical, 
horizontal). In addition, ETS from three eye-tracking systems were recorded. We will not 
identify the vendors here since this paper is a review of the PERCLOS measure and not an 
evaluation of the devices. As an objective alertness label, the VDL was calculated.  
 

 
 

Figure 1. Experimental setup 
 
METHODOLOGY 
 
Feature Extraction of the PERCLOS, ETS, and EEG/EOG Data 
 
To ensure a fair comparison of the three measures, PERCLOS, ETS, and EEG/EOG 
prepossessing, a feature extraction was performed according to a common concept (Golz et al. 
2007). First, non-overlapping segmentation with variable time length was carried out, followed 
by linear trend removal and estimation of power spectral densities (PSD) utilizing the modified 
periodogram method. PSD values of all three signal types were averaged in spectral bands, 
applying optimized frequency bands. In case of ETS, EEG, and EOG data 1.0 Hz wide bands and 
a range of 1 - 23 Hz turned out to be optimal, whereas in case of PERCLOS, signals 0.2 Hz wide 
bands and a range of 0 to 4 Hz were used. All parameters were found empirically at the lowest 
classification errors in the test set. It is important for the EEG/EOG that the proposed frequency 
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features do not make any assumptions about predefined frequency bands, and that the alertness 
state of the operator is not determined using ratios or the power of certain frequency bands. 
 
Labels of the Driving Session 
 
KSS and VLD values were divided into categories ‘alert’ (class 1) and ‘fatigued’ (class 2). This 
allows getting labels with the corresponding data (PERCLOS, ETS, EEG/EOG) for the 
discriminant analysis. For the subjective label the threshold parameter was selected at KSS = 7 
(Figure 2, left). For a better separation between class 1 and class 2 samples, the range of KSS = 
6.9 - 7.1 was eliminated from the data set. This same procedure was applied to the objective 
label. Threshold was determined at VLD = 13.5%, and all samples in the range of VLD = 13.0% 
- 14.0% were eliminated (Figure 2, right). 
 

     
 

Figure 2. Distribution of the subjective label, Karolinska Sleepiness Scale (KSS) (left) and the objective label, 
Variation of Lane Deviation (VDL) (right) after elimination of values in the threshold region;  

separation leads to two classes: alert (Class 1) and strong fatigue (Class 2) 
 
The segment length of the data was used as additional variable in order to determine the best 
time window for optimal fatigue detection.  
 
Two Class Discrimination using LVQ Networks 
 
Using an ensemble of Learning Vector 
Quantization (LVQ) networks for the 
discrimination task between the two 
classes is only one of several possible 
methods. There are some advantages to the 
LVQ networks which were introduced by 
Kohonen in 1990. LVQ neural networks 
are able to classify data with low error 
rates and good discrimination sensitivity. 
The LVQ output layer consists of one or 
several neurons which are designated to 
one of the two classes introduced for our 
task (Figure 3).  

Figure 3. Architecture of the Learning Vector 
Quantization (LVQ) networks 
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This yields high sensitivity of the LVQ networks to small and unknown changes in the input 
feature vector. Input vectors are built from the frequencies of the signals. The supervised training 
procedure for one LVQ network utilized the data set (input vectors with corresponding labels) on 
a randomly divided ratio of 80% to 20% in each training and test set. For a given input vector, 
the neuron with the closest weight vector is selected as the “winner,” then the winning neuron is 
rewarded if it belongs to the correct class (determined by the labels) and moved toward the input 
vector. On the other hand, if the winning neuron does not belong to the right class, it is 
“punished” and forced to move away the input vector. The test error obtained from the data test 
set provides the information about the degree of discrimination between the two classes (‘alert’ 
and ‘fatigued’) for the different signals (PERCLOS, ETS and EEG/EOG). A low test error 
represents good discrimination, and the fact that the signal contains high information about the 
alertness state of the operator. To get very reliable results and good comparison between the 
signals, the whole process is repeated for each of the 50 LVQ networks belonging to the 
classification ensemble. Figure 4 shows the results of the network ensemble (50 LVQ networks). 
 
RESULTS 
 
For simplicity, it was only asked how well different alertness measures may discriminate 
between the two classes (‘alert’ and ‘fatigued’), or in other terms which signal provides the best 
ability to detect driver fatigue. The lowest test errors of classification are obtained for both KSS 
and VDL labels if features of EEG/EOG were fused together. Mean test errors of about 13% 
were obtained in a relatively broad range of optimal segment lengths between 50s and 300s for 
the subjective KSS label (Figure 4a). In case of the objective VDL label, the best mean test error 
achieved with EEG/EOG was 10% for segment lengths close to 150s. The PERCLOS measures 
of all three devices resulted in substantially higher test errors for the KSS as well as for the VLD 
labels. Mean test errors varied between 26% and 35% if segment lengths were larger than 50s. 
For both labels (KSS, VLD), the differences between the devices were roughly the same. Device 
‘A’ performed slightly better for small segment lengths, whereas device ‘C’ performed slightly 
better for large segment lengths. The other important result of our investigation was directed to 
the vendors of the eye-tracking devices. They should not reduce the signal output of their devices 
to the PERCLOS measure. The ETS outputs of all three devices yielded lower test errors than the 

PERCLOS measure, but higher than 
the EEG/EOG. Furthermore, the 
differences between the devices were 
lower for the more general ETS 
measures than for the PERCLOS 
measures. One possible explanation 
would be that the PERCLOS 
measure is extracted slightly 
differently in each of the devices. 
Therefore, an alertness assessment 
algorithm based on the complete ETS 
output would be a substantial 
improvement.  
    

   
Figure 4a. Mean and standard deviation for subjective KSS label 

EEG/EOG 
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Figure 4b. Mean and standard deviation for objective VDL label 
 

In general, it was found that test errors decreased with increasing segment length. This should be 
no surprise, because changes in the alertness level as well as in driving performance occur in the 
time frame of minutes. Therefore, it takes data information with segments lengths larger than 30 
seconds to detect these changes. Accidents caused by microsleep events which occur on time 
resolution of seconds can thus not be prevented by the PERCLOS measure. 
 
CONCLUSIONS 
 
PERCLOS is, at the moment, the most often utilized measure of driver alertness in fatigue 
monitoring technologies, (e.g., infrared video cameras). The PERCLOS signal in general 
contains a fair amount of information about the fatigue state of an operator. One important 
application of these systems is the continuous alertness monitoring of operators in transportation 
and mining operations. The full potential of eye-tracking technologies can and should be used. 
 
Results of experimental investigations and subsequent adaptive data analysis yielded substantial 
differences in the usefulness of electrophysiological signals (EEG/EOG), compared to an 
oculomotoric signal which was reduced to the PERCLOS measure. This main result is basically 
similar for the subjective label (KSS) as well as objective label (VLD). Mean test errors of 13% 
and 10% for subjective and objective labels, respectively, show that EEG/EOG has the potential 
to serve as a reference standard for use in evaluating fatigue monitoring technologies. Mean test 
errors between 26% and 32% for subjective and objective labels, respectively, show that the 
PERCLOS signals seems to carry considerably less information on driver alertness than 
EEG/EOG. It was shown that the reduction of ETS data to the PERCLOS measure diminishes 
substantially the potential of the devices for alertness assessment. These results clearly contradict 
those reported by Dinges et al. (1998), where PERCLOS was found to be the most reliable and 
valid method for determination of driver alertness levels, and that EEG results were worse than 
PERCLOS. Based on this statement, many questions from the scientific community should have 
been raised. Some doubts were expressed by Johns (2003). He pointed out that under the 
demands of sustained attention, some sleep-deprived subjects fall asleep while their eyes remain 
open. But PERCLOS does not include any assessment of eye and eye lid movements to capture 
this phenomenon. Important dynamic characteristics which are widely accepted, such as slow 
roving eye movements, reductions in maximal saccadic velocity, or velocity of eye lid reopening, 

EEG/EOG 
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are ignored in the PERCLOS measure as well. However, their spectral characteristics were 
identified in our analysis which may account for the far better results of EEG/EOG data fusion 
presented here. Note that highly dynamical alterations are better reflected by ETS than by 
PERCLOS. Fortunately, this has been corrected in recent eye data algorithm (e.g. Schleicher et 
al. 2007). It is therefore necessary to analyze the complete ETS as fatigue detection tool in 
commercially available infrared video systems. The current results confirm the doubts stated in 
Johns publication (2003) and clearly show the limitations of PERCLOS. Some cautions should 
be considered when operator alertness is estimated by relying solely on PERCLOS.  
 
In general, the goal of many researchers to reduce such a complex issue to a simple threshold pa-
rameter (Dinges et al. 1998) was clearly misguided. The era of alertness assessment based solely 
on a single measure such as PERCLOS should be in the past. To achieve the ultimate goal of 
reducing the number of costly driving accidents, other aspects such as mental workload, operator 
distraction, and of course inter-individual differences have to be taken into account. All of these 
considerations require a multi-sensor approach from appropriate hardware, along with the 
application of data fusion concepts from the software side. Therefore, additional measures 
beyond the ETS should be considered. In particular, operator based signals such as PERCLOS, 
ETS, heart rate, head motions, etc. should be combined with vehicle based measures such as 
steering wheel movements, time to lane crossing, and heading errors, etc.  
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