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Summary: With the introduction of more advanced vehicle technology, it is 
paramount to assess its safety benefit. Advanced driver assistance systems (ADAS) 
can reduce crashes and mitigate crash severity, if designed appropriately. Driver 
behavior models are integral to the ADAS design process, complementing time and 
resource intensive human participant experiments. We introduce a method to model 
driver responses to forward collision events by quantifying multivariate behavior 
with copulas and Monte Carlo simulation. This approach capitalizes on the data 
from small samples of crash events observed in naturalistic or simulator studies. 
Copulas summarize data by capturing the underlying joint distribution of variables, 
and Monte Carlo methods can be used to repeatedly sample from these 
distributions. A driver model can be parameterized with these samples, and run on 
a desktop driving simulation environment.  
 

INTRODUCTION 
 
Driving is undergoing a transformation. Vehicles with Advanced Driver Assistance Systems 
(ADAS) such as collision warning and imminent braking systems are already in the market, with 
the promise of more intelligent vehicles being available in the near future. Understanding driver 
responses to crash situations can guide design and evaluation of these ADAS interventions. 
Assumptions about drivers’ responses and the environment inform algorithm design. These 
factors can include demographics (e.g. age, and gender), event kinematics (e.g. lane position, 
headway to forward vehicle, speed), traffic rules (e.g. traffic rules, cultural differences between 
drivers in the U.S and Europe), and vehicle dynamics (e.g. weight and deceleration profile). 
Computational models of the driver make assumptions about how these factors affect drivers’ 
response explicit. The driver model is coupled with a model of the ADAS and their joint 
performance is studied in a simulated roadway environment. The outcomes, such as crash 
probability and severity, can be used to estimate ADAS safety benefits. These computational 
models support a more rapid iterative design of ADAS, than is possible with time and resource 
intensive human participant experiments. 
 
Data from driving simulator and naturalistic studies provide a detailed record of driver response 
behavior from which models could be developed. However, the development of realistic and 
robust driver models poses a substantial challenge. Often, elements of driver responses are 
assumed to be independent, but this may not hold and neglecting the interdependence could 
result in unreliable predictions. In addition, human participant data on behavior to crash-
imminent situations is sparse. Multiple exposures to collision situations can change the 
expectations and responses of drivers. As a consequence, even with a driving simulator, 
collecting hundreds of responses for each participant is infeasible and so researchers are left with 
only one or two imminent collision responses from each driver.  Developing accurate models of 
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driver response to imminent collision situations requires techniques that address the drawbacks 
of sparse and interdependent behavioral data. 
 
MODELING TOOLSET: COPULAS AND MONTE CARLO SIMULATION 
 
Drivers’ responses to collisions reflect a dynamic process comprised of interdependent elements 
that play out over time: a driver’s reaction time influences subsequent braking behavior. Copulas 
model the relationships between multiple variables of a complex system (Frees & Valdez, 1997) 
by capturing their dependence structure. The dependence structure of a composite response can 
be fully described using the marginal distributions of each variable and the association between 
them. Copulas have historically been popular in the fields of financial analysis (Melchiori, 2003), 
biological system modeling (Kim et al., 2008), and more recently applied to driver injury 
modeling in vehicle crashes (Yasmin, Eluru, Pinjari, & Tay, 2014). They offer a promising 
approach for describing the interdependence between elements of drivers’ responses. 
 
In comparing copulas to classical regression analysis, Frees and Valdez (1997) point out that, 
unlike studying a single dependent measure of interest, copulas allow for combining several 
dependent measures to describe behavior. As an example of multivariate outcomes in driving, 
the brake reaction time of a driver to a lead-vehicle braking event is one dependent measure that 
can be collected. In addition, there are other measures such as the deceleration profile, the peak 
brake force during the maneuver, and the steering profile. These measures are different elements 
of a composite response. Multivariate analysis is needed to model the interdependence of these 
elements. The advantage of copulas over other multivariate techniques is their capacity to model 
the outcomes generated by any distribution, rather than only the normal distribution (Frees & 
Valdez, 1997), as well as their ability to account for different associations between the variables.  
 
Many families of copulas have been developed, and among these, the Archimedean approach is 
preferred because it compresses the multiple dimensions of the system outcome into one function 
which is called the generator of the copula (Frees & Valdez, 1997; Melchiori, 2003). The 
marginal distributions modeled by copula equations are uniformly distributed, hence the 
variables can be converted to the unit uniform distribution [0, 1] by a probability integral 
transformation. Their correlation coefficient is then estimated. A generator function of the joint 
distribution captures the inter-dependence of these marginal distributions using a measure of 
association. This measure of association is related to the correlation coefficient between the 
variables and Table 1 shows how the correlation coefficients can be used to estimate the 
parameters for three of the most popular Archimedean copulas. Once estimated, a copula can 
generate a joint distribution of the multiple elements of drivers’ collision avoidance response. 
 

The joint distribution of drivers’ response can extrapolate behavior from tens of participant’s 
data points to hundreds and thousands of similar responses. Monte Carlo simulation can sample 
from this joint distribution for parameters of a driver model. Different parameterized instances of 
the model can then be run within a simulation environment. The simulation environment consists 
of a scenario, a vehicle, an ADAS, and a driver. The scenario is represented by the lane and road 
networks, pavement types, and traffic such as a lead vehicle. The vehicle dynamics consist of the 
vehicle kinematic equations. ADAS models are usually linked to the vehicle dynamics. The 
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driver model and the ADAS contribute to vehicle control functions. This study used a simulation 
environment that replicated the scenario and vehicle dynamics used in the National Advanced 
Driving Simulator (NADS).  

Table 1. Copulas that follow Archimedean approach (adapted from Frees & Valdez, 1997) 

 
METHODS 
 
The dataset used in this study is from the Crash Warning Interface Metrics Phase 3 study 
commissioned by the National Highway Traffic Safety Administration. The study was conducted 
in 2012 at NADS, and tested the effects of ADAS on responses to crash-imminent forward 
collision and lane departure events (Brown, Marshall, Chrysler, & Schmitt, 2014). Only the 
forward collision event data were analyzed for this study. The assistance systems used were 
passive – they provided warnings without initiating responses. Different warning modes were 
studied – auditory beeps, head-up display, seat vibration, brake pedal pulse, and seatbelt tug – 
with a baseline no-warning condition. In addition to warning mode, the timing of the warning 
was varied as either an early warning at 3.5 seconds time to collision (TTC) or a late warning at 
2.1 seconds TTC. The warning mode and timing were between-subjects and the collision events 
were within-subjects conditions. Each participant was exposed to two forward collision events 
and two lane departure events. 
 
Data Reduction and Model Variables 
 
Ninety-six participants, aged 35-55 years old, were part of the study. Eight participants, evenly 
divided by gender, experienced one of the twelve conditions (6 warning mode x 2 warning 
timing). The participants were asked to follow a lead vehicle at a posted speed limit of 40 mph, 
and engaged in a number recall task during the initiation of FCW events. The recall task required 
the participants to look at a screen to their right, behind the passenger head-rest (Figure 1a). A 
series of five random numbers were displayed, one at a time, on the screen. This drew the 
drivers’ eyes away from the forward roadway, during which time the lead car swerved to reveal a 
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stopped car. The warning was triggered when the TTC with the stopped vehicle reached 3.5 s, 
for the late warning group, or 2.1 s, for the early warning group.  
 
Only the seatbelt tug and the baseline no-warning conditions, at the late 2.1 seconds TTC were 
selected for analysis in this study. The two conditions were selected due to the difference in 
diverting the driver’s attention back to the roadway from the task screen. The baseline condition 
resulted in the greatest visual distraction – participants looked away from the forward roadway 
for an average of 1.2 seconds. On the other hand, participants in the seatbelt warning condition 
looked away for the shortest duration – an average 0.8 seconds. The brake reaction time after the 
onset of alert (BRT) and the peak brake force (PBF) characterized drivers’ response. 
 
The experiment design stipulated 16 data points for each condition – 8 participants with two 
collision imminent FCW events each. However, analysis of the data revealed that the BRT and 
PBF were only mildly correlated for the second events. This indicates possible behavior changes 
due to exposure of the experiment manipulation. In addition to low correlation between the BRT 
and PBF in the second events, participants also tended to steer into the empty neighboring lane 
rather than brake. Such behavior is inconsistent driver response to actual collision situations, 
where steering and a combination of steering and braking is rare (Najm, Toma, & Brewer, 2013). 
Consequently, this analysis focuses on the response to the first event. After accounting for 
missing data, the baseline and seatbelt warning had 7 and 6 responses respectively. 

 

 
 
 
 
 
 
 
 
 

Copula Modeling  
 
The two variables, BRT and PBF were modeled as a joint distribution using copulas. All 
statistical analyses used the R statistical software (R Core Team, 2014). The copulas were 
constructed using the Copula package (Yan, 2007), and distributions were fit using the fitdistplus 
(Delignette-Muller & Dutang, 2015) and MASS (Venables & Ripley, 2002) packages.  
 
Histograms were plotted to visualize the distributions and the variables in both conditions were 
fitted to different distributions. A comparison of distributions using the Akaike Information 
Criterion (AIC) revealed that both BRT and PBF, under both the warning conditions, were best 
described by the normal distribution. The Table 2 summarizes BRT and PBF data. The BRT and 
PBF were negatively correlated: Kendall’s tau for baseline = -0.43 and seatbelt tug = -0.33. This 

(a)	 (b)	

Figure 1. (a) Number presented to participant during FCW Event; (b) Diagram of FCW event scenario and 
timing- OS: OwnShip, LV: Lead Vehicle, SV: Stopped Vehicle 
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indicates that the later a driver responded, the lesser the brake force. Visual analysis of the driver 
trajectories showed that many late responding drivers swerved around the vehicle and so relied 
less on braking to avoid collision. The Clayton copula from the Archimedean family was 
selected (Table 1) to model the joint distribution of BRT and PBF and to generate data from the 
joint distribution. From the values of tau, the respective copula parameters were calculated using 
the equations in Table 1 as baseline = -0.6 and haptic= -0.50. The generated data and the 
experimental points are shown in Figure 2. In addition to the copula data, another dataset was 
generated by sampling normal distributions, assuming independence between BRT and PBF. 
These data were used to assess the consequences of assuming independence of BRT and PBF. 
 

Table 2. Summary statistics for the experimental data (CWIM Phase 3) as normal distribution 

Variable Name Baseline Seatbelt Tug 
Brake Reaction Time (BRT) in seconds Mean=1.49, SD=0.51 Mean=1.16, SD=0.60 

Peak Brake Force (PBF) in pound force Mean=111.4, SD=40.1 Mean=	88.5, SD=	29.94 
 
Simulation Architecture 
 
The modeling environment was 
the NADS desktop simulation 
software, the NADS-MiniSim™. 
The driver and ADAS model was 
built using Matlab Simulink™. 
The ADAS model replicated the 
warning timing used for the data 
collection, issuing a warning when 
the TTC of the driver’s vehicle 
dropped below 2.1 seconds. A 
simple driver response model was 
based on BRT and PBF, in which 
the driver is assumed to apply a 
constant brake force after a delay 
defined by the reaction time. The delayed response begins after the TTC to the lead vehicle 
dropped below 2.1 s, which is also when the warning is issued. 
 
RESULTS 
 
The Adjusted Minimum Time to Collision (AMTTC) measured crash severity. AMTTC is 
defined as the time that a driver has to avoid collision (Brown, 2005). Positive values of AMTTC 
indicate the minimum time to collision and negative values indicate that the driver collided. The 
magnitude of the negative value indicates how much sooner the driver needed to react to avoid 
collision. AMTTC is calculated using the deceleration and velocity at impact.  
 
The driver model used either BRT and PBF generated by the copula, or BRT and PBF generated 
by independent distributions. The comparison of AMTTC for 150 runs of each of the datasets 
(Figure 3) shows that the independence assumption predicts slightly more, but less severe 
crashes (less negative AMTTC). Similar small differences in results were observed for the 

Figure 2. Data generated by the Clayton copula and the 
experimental data (large dots) for the baseline condition 
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baseline condition. The results show no obvious benefit of the copula approach given the modest 
correlation between BRT and PBF (-0.33 for the seatbelt tug). 

	
Figure 3. AMTTC comparison for the seatbelt tug condition between driver models using a copula to model 

the joint distribution of BRT and PBF and a model that assumes independent of BRT and PBF	

DISCUSSION 
 
The methods described in this study help address central challenges to developing accurate 
models of driver response to imminent collision situations: sparse and interdependent data. 
Statistical methods, such as copulas, that describe relationships among data are useful tools for 
understanding and modeling driver responses. Combined with Monte Carlo simulations, copulas 
provide an efficient method to extrapolate sparse experimental data.  

However, the research described in this paper has multiple limitations. The dataset contains very 
few data points, with just 13 total observations across both conditions. This is clearly too sparse 
to make robust estimates of the underlying distributions. Indeed, copula modeling requires 
thoughtful application of the summary distributions—a single point can have a substantial 
influence on the copula. Collecting sufficient data for the copula plagues both controlled 
simulator experiments and naturalistic data collection. In both situations, filtering data to a set of 
qualitatively similar responses reduces the number of data points. As the event description gets 
more specific, the number of matching cases shrinks (Rasmussen, 1997). The benefit of copula 
modeling is that with many sparse datasets it could be possible to create a combined dataset that 
considers the dependencies between response elements and avoids potentially dangerous 
assumptions of independence.  

Another limit of this work is that the driver model is overly simplified. The brake force is 
assumed constant, and the reaction time is a composite of the perception, motor, and vehicle 
response times. Other models have been developed, such as ACT-R and queueing network 
model that account for the dynamic process of response, as well as models specific to rear-end 
collisions (Brown, Lee, & McGehee, 2001). Perceptual cues of imminent collisions and the 
associated neurological processes have been identified and can be integrated into a driver model 
(Flach, Smith, Stanard, & Dittman, 2004). Future work in this effort will focus on the integration 
of perceptual cues into a dynamic process model of driver response.  
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