
PROCEEDINGS of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design 
 

A COHORT-BASED DATA STRUCTURE DESIGN FOR ANALYZING CRASH RISK  
USING NATURALISTIC DRIVING DATA  

 
Paul P. Jovanis1 & Kun-Feng (Ken) Wu2  

1Pennsylvania State University, University Park, Pennsylvania, USA 
2Federal Highway Administration, McLean, Virginia, USA 

Email: ppj2@engr.psu.edu  
 

Summary: Although naturalistic driving studies (NDS) have become more 
prevalent in recent years, many challenges remain in analyzing the data. One 
challenge is inclusion of exposure in modeling crash risk. While this is a potential 
strength of NDS, comparatively few studies have emphasized exposure-based 
analyses. A second challenge is the formulation of analysis methods that include 
driver attributes, event attributes, and driving environment in a structured 
formulation. A third challenge is the formulation of baseline hazard to frequently 
accompany the identification of NDS "events" (e.g. crashes, near crashes and/or 
safety critical events). This paper reports on a cohort-based data structure design 
to address these three challenges. Collision warning alert frequency data from 
University of Michigan Transportation Institute (UMTRI)’s Roadway Departure 
and Curve Warning System (RDCW) Field Operation Test (FOT) are used to 
demonstrate this approach. The paper concludes with a discussion of applications 
which include crash and other NDS-observed events, including potential 
applications to road safety management through the development of enhanced 
safety performance functions. 
 

INTRODUCTION 
 
Naturalistic driving studies (NDS) have been shown to have great potential to provide more 
insight into traffic safety analyses (e.g. Dingus et al., 2005; Shankar et al., 2008; McGehee et al., 
2010; Wu and Jovanis 2012a; 2012b), but many challenges are to be overcome to exploit the 
utility of such studies.  The challenges discussed in this paper include: the inclusion of exposure 
in modeling crash risk; the formulation of a flexible analysis structure to allow inclusion of many 
types of predictor variables; and, the formulation of events other than crashes that can be used 
for comparison purposes and identification of baseline risk.  
 
Comparatively few NDS studies have emphasized exposure-based analyses; exceptions include 
Shankar et al., 2008 and Jovanis et al., 2012. It is much more common for NDS analyses to 
include detailed study of crash or near-crash events without explicit regard to exposure (e.g. 
Dingus et al., 2005). Without considering driving exposure, one would expect the safety-related 
events occur more frequently with tasks and activities that drivers perform more 
frequently (Hanowski et al, 2005). One goal of this paper is to explore the use of an NDS data 
formulation that facilitates the inclusion of exposure in the data analyses. 
 
A second challenge is the formulation of analysis methods that include driver attributes, event 
attributes, and driving environment in a structured formulation; Jovanis et al. (2011) showed that 
modeling of NDS event data should include all three of these variable types to reduce the 

530 



PROCEEDINGS of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design 
 

likelihood of bias. The research indicated a substantial omitted-variable bias for estimation of the 
effect of context variables but little difference for driver variables.  
 
A third challenge is the formulation of baseline hazard to be used in comparison with NDS 
events. Inclusion of baseline events would allow an estimation of the odds of a crash as 
compared with baseline non-crashes (Dingus et al., 2005; Jovanis et al., 2011). But non-safety-
related events are costly to obtain and difficult to define, particularly if an array of typical 
predictors is to be included in a data set. Although in current practice these data are obtained at 
random from a large driving file, it remains an open question as to how the observations will be 
selected and how many will be needed.  
 
This study proposes a cohort-based data structure design to address these three challenges.  
 
METHODOLOGY 
 
A cohort study enrolls subjects into a particular cohort (study group) based upon their current 
risk factor status; the prior outcome status (e.g. crash or non-crash) is then tabulated for each 
individual cohort. Our proposed cohort-based data structure begins with a driver as a unit of 
analysis. The driver is followed over multiple trips throughout the course of the study (Shankar 
et al., 2008; Jovanis et al., 2012). Each driver is associated with specific attributes that are 
constant such as age, gender, driver attitudinal measures, and vehicle type/characteristics. Other 
variables can change throughout the course of the study and within each trip (e.g., roadway type, 
roadway characteristics, environmental factors, driver distraction, driver impairment, and driving 
speed). A subset of these variables can be used to define a cohort – a trip segment that is 
homogeneous with respect to the variables of interest. Note: travel time and/or distance may thus 
be accumulated during the study for individual drivers in each defined cohort (i.e., homogeneous 
trip segment). Travel undertaken in each homogeneous trip segment would then be aggregated to 
determine total exposure and total number of events within a cohort. A cohort thus represents a 
set of drivers, by type, who experience travel over defined homogeneous trip segments 
characterized by time or distance of travel. The number of events of interest (e.g., crashes or 
other events) occurring for a cohort is thus accumulated across drivers, retaining the number of 
events and/or the time between events for each driver.  
 
This concept is illustrated in Table 1 and Table 2. Table 1 contains the initial cohort-structured 
data in which a particular outcome (i.e., an event or non-event) occurs after some period of time 
or length of travel. The context and driver attributes are selected by the researcher depending on 
the issues to be explored. Table 2 shows how the individual outcomes can be grouped, if needed, 
for each cohort. Each unique combination of driver and context variables is now listed with the 
cumulative time or distance – a measure of exposure to risk. Notice that each cohort includes the 
sum of individual trip segments and their outcomes. Each driver’s outcomes are aggregated and 
matched to context.  The sum of the “1” values in the “Outcome” column in Table 1 are the 
number of events of interest for that cohort. The length and time variables from Table 1 are also 
summed to derive the total time and total distance for each driver in each context. Note that the 
trips without an event of interest (i.e., outcome zero) are summed and included in the 
corresponding total distance and time for each cohort. A dummy variable designation is 
employed for the context variables and driver attributes.  
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Table 1: Initial Cohort-Based Data Structure 

Outcome 
(0/1) Length Time Event Attributes 

(as many as needed) 
Context Variables 

(as many as needed) 
Driver Attributes 

(as many as needed) 
      
      

 
Table 2: Summed Event Outcomes by Context and Driver Attributes with Exposure Measures 

# of Outcomes 
 (count) 

Total Length 
(veh. mi.) 

Total Time 
(Veh.hours) 

Event Attributes 
(as many as needed) 

Context Variables 
(as many as needed) 

Driver Attributes 
(as many as needed) 

      
      
 
One may now aggregate the data as in Table 2 and use a count regression approach to estimate 
the number of surrogate events in each cohort. Count regression formulations developed using 
the cohort structure thus readily include the amount of travel within each cohort including non-
crashes as well as crashes (or other events of interest such as alert warnings). By aggregating the 
exposure units in column 2 or three, one can estimate exposure to risk within each cohort.  
 
A multilevel specification can also be considered to improve model precision. The unit of the 
first level is the context combination, and the unit of the second level is the individual driver. 
Concerning multilevel model random effect covariance, we can either assume the second-level 
predictors are independent of each other or that they are correlated to each other. Random-effects 
negative binomial (RENB) models have been applied previously in NDS data analyses (Jovanis 
et al., 2011). Notice that the context variables include those normally associated with the 
development of the safety performance function (SPF) in engineering studies of road safety. The 
enhancement with naturalistic data is the explicit inclusion of driver-related variables which 
provide an enhanced understanding of driver-related factors and crash (or in this case, alert risk). 
Exposure in this NDS application is derived from the cohort formulation while in engineering 
studies in typically comes from road traffic counting programs. 
 
One of the immediate applications of this approach is to statistically distinguish different event 
types. To group events with similar contributing factors and etiologies, a counterpart to the Chow 
test as suggested by Greene (2003), is proposed to undertake this task. The procedure tests 
whether the log-likelihood for a pooled-dataset model is significantly different from the sum of 
log-likelihoods for reduced dataset models.  
 
DATA DESCRIPTION 
 
The UMTRI data consist of NDS-measured driving for a set of drivers who experienced a series 
of alerts about potential crashes from on-board safety systems (Leblanc et al., 2006; Sayer et al., 
2005). The dependent variables used in the analyses were derived from a system designed to 
detect excessive speed entering a curve (the Curve Speed Warning System or CSW) and an alert 
triggered when the subject vehicle deviated from the lane or road edge (i.e., the Lateral Drift 
Warning System or LDW). The data include the number of miles and length of time driven on 
road segments of particular geometry and environmental conditions by each driver as 
summarized in Table 1 and as later processed into Table 2.  
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The data were collected in 11 instrumented 2003 Nissan Altima 3.5 SE sedans. A total of 87 
drivers were enrolled during 2004 to 2005, and each driver drove the car for four weeks with the 
first week with the system disabled. To demonstrate this approach can be used to statistically 
distinguish different event types, the response variables used in this study are the number of 
CSW alerts, LDW alerts, and the total number of alerts. The predictors included the following:  

• Context variables: road functional class, ramp, urban/rural, day/night. 
• Event variables: wet/dry (based on windshield wiper use), system disabled/enabled status 

(i.e. either the data were collected in the first week (system disabled) or in weeks 2-4).  
• Driver variables: gender, education, years of driving experience, last year’s mileage 

driven, use of glasses or contacts, smoker. 
A final sample size of 72 drivers is included in this study. On average, there were 32 cohorts 
experienced by each driver with the minimum of 9 and the maximum of 52.     
 
DATA ANALYSIS 
 
Table 3 contains the estimation results of the three RENB models with gamma distribution for 
the random effect. Models were estimated using distance and time as exposure, but the results 
are consistent, so only distance is shown here. The likelihood-ratio tests (the row in the bottom) 
for all the models indicate that RENB models fit better than its counterpart using pure negative 
binomial model, suggesting significant differences between drivers. The first model considers 
the number of total alerts (pool model), and it was broken down into models for LDW and CSW 
separately (reduced models). As shown in Table 3, the magnitudes and signs between the pool 
and reduced models are quite different, and the Chow test confirms the structural difference 
between CSW and LDW models (p-value = 0.000).  
 
Although all driver, event, and context variables were included in the models, only predictors 
achieving statistical significance in LDW and CSW models are discussed here. LDW alerts are 
30 percent more likely to be triggered on minor arterial than on freeways ((exp(0.263)-1)*100 = 
30), but are 95 percent less likely to be triggered on local roads ( (1-exp(-3.05)*100 = 95). 
Although the former is intuitive, the later may reflect the fact that there is no lane marker on 
local roads in many occasions. The variable “system disabled” shows that the LDW triggered 
were reduced by 11 percent after the system was enabled. The variable of miles driven in last 
year is a self-reported variable, and is used as a proxy to reflect the amount of driving for a driver 
in a year. Drivers with more miles driven in a year were found to less likely to trigger LDW 
alerts. Compared to freeways, CSW alerts are more likely to be triggered on every other 
functional class, in particular, on ramps. The “system disabled” variable is significant and 
negative in the CSW model, indicated more alerts with system on than with system off. We 
interpret this is as possibly being related to driver adaptation to the device, resulting in more 
alerts with the device activated. Interestingly, the variable of years of driving is considered to be 
an indicator of driving experience, and it was found to be beneficial in reducing frequency of 
CSW alerts. Consistent with the findings in Jovanis et al. (2011), some correlation between event 
attributes and driving environment were found. As an example, the correlation coefficient of 
speed differentials on a homogeneous trip segment and minor arterial is as high as 0.2. Failure to 
include either one of them would lead to biased estimates.        
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By including exposure measures, RENB regression enables the comparison between safety-
related events and non-safety-related events, the baseline. The relationship between event 
frequency and miles-traveled is still non-linear, same as identified in most current SPFs. The 
magnitude of miles-traveled for LDW model is greater than that for the CSW model. Although 
this finding indicates LDW alters occurs more frequently than CSW alters in terms of the same 
distance travel, it may be simply because CSW alters could only be triggered on horizontal 
curves, but LDW could be triggered everywhere there are lane markings.    
 

Table 3. Random-effects negative binomial models 

 
CSW and LDW LDW CSW 

Logarithm of Miles Traveled on a Homogeneous Trip Segment 0.901*** 0.905*** 0.812*** 
S.E. 0.016 0.019 0.035 

Major Arterial with Limited Access (Baseline: freeway) 0.284 0.275 0.575 
S.E. 0.243 0.254 0.723 

Major Arterial (Baseline: freeway) 0.179*** 0.043 1.218*** 
S.E. 0.05 0.057 0.132 

Minor Arterial (Baseline: freeway) 0.362*** 0.263*** 1.239*** 
S.E. 0.044 0.048 0.13 

Local (Baseline: freeway) -0.832*** -3.051*** 1.671*** 
S.E. 0.098 0.26 0.158 

Ramp (Baseline: freeway) 1.668*** 0.284*   3.019*** 
S.E. 0.074 0.117 0.142 

Urban (Baseline: Rural) 0.162**  0.186**  0.183 
S.E. 0.055 0.061 0.126 

System Disabled 0.066 0.108*   -0.134 
S.E. 0.038 0.044 0.08 

Miles Driven in Last Year  -0.113 -0.174*   0.048 
S.E. 0.061 0.071 0.08 

Years of driving 0.001 0.004 -0.011**  
S.E. 0.003 0.003 0.004 

Male 0.169 0.137 0.12 
S.E. 0.094 0.106 0.124 

Speed Differential on a Homogeneous Trip Segment -0.006 -0.004 -0.006 
S.E. 0.004 0.005 0.008 

Constant -2.320*** -2.426*** -4.609*** 
S.E. 0.171 0.197 0.288 

Sample size (72 drivers) 2325 2325 2325 
Log-likelihood -3576.935 -2818.68 -1933.15 
P-value for likelihood-ratio test again pure NB model 0.0000 0.0000 0.0000 
*significant at 10% level; **significant at 5% level; ***significant at 1% level 
 
SUMMARY AND DISCUSSION 
 
The cohort model formulation takes advantage of the trip-by-trip information in the UMTRI data 
set, along with additional GIS-related factors coded by UMTRI (such as road type and 
environmental conditions) to derive the alert frequency in each trip segment. The issue of interest 
is the ability to truly capitalize on not only the naturalistic driver behavior data, but detailed GIS 
roadway data. Further, availability of detailed GPS readings as part of NDS will allow for more 
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detailed roadway descriptors possibly at a finer scale. This would reduce the level of aggregation 
of speed along a route and undoubtedly yield more precise findings for cohorts with promise of 
safety improvement. Lastly, if the duration of the NDS is a year or more (as in SHRP 2 Safety) 
then the additional predictor for annual mileage would not be needed; the precise measured 
driving from the NDS GPS and GIS should suffice. 
 
This approach has many potentially useful applications. Even though the models are estimated 
with alerts, there is a direct parallel to the modeling of crashes or other events of interest such as 
well-behaved surrogates similar to crashes as described in Wu and Jovanis (2012a and b). This 
formulation is also superior for evaluating the effectiveness of in-vehicle safety devices in FOTs; 
compared to a naïve before-after design the cohort formulation includes exposure while also 
considering all predictors simultaneously. Moreover, the creation and inclusion of interactions 
terms between system on/off and context variables can be used to better understand when the 
systems work better for driver safety.   
 
This approach is not without limitations. First, although the cohort may be defined quite flexibly, 
little is known about the minimal number of required cohorts and how should the cohorts be 
defined This issue is related to a sampling zero problem, as well as whether the decomposition or 
aggregation is meaningful. As an example, it may not be appropriate or useful to include 
kinematic variables in a specification or model of this type because it would lead to a sampling 
zero problem. On the one hand, the aggregation of average values for each kinematic variable 
may be problematic because they may be affected by factors that could be used to redefine 
homogenous trip segments, but they are not included in the data set.  For example, suppose 
additional variables were included in the dataset, including curve/tangent presence, presence of 
an intersection, traffic volume, and grade.  These could be used to redefine homogeneous trip 
segments. Once we redefine the segments, average speeds would more accurately reflect travel 
speeds on each segment. The averages of kinematic values over homogeneous trip segments may 
lack resolution about event occurrence during the course of the traversal of the entire segment.  
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