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Summary: Task analysis is a staple of ergonomics, neuroergonomics, human 
factors, and experimental psychology inquiry, and often benefits from granularity 
beyond the task level to the subtask level. The concept and challenge of 
identifying the subcomponents of tasks are neither new, nor solved. Practitioners 
routinely identify individually internally consistent and yet conflicting 
subdivisions. The challenge of producing reliable, valid subtask data across 
efforts recommends a unified framework for identifying consistent subtask 
divisions within tasks. A framework is here forwarded, based upon universal 
“antiphony” turn-taking behavior in human-human interaction, but adapted to 
address the highly scripted vocabulary of human-machine interaction. Practical 
application to a real-world vehicle interface is demonstrated, an example 
discussed in the light of research design, applied use, and future improvement. 

 
INTRODUCTION 
 
The study of work, and the human factors and ergonomics that underpin successes and failures in 
work, has long relied upon analysis of highly variable tasks. Human Machine Interaction (HMI) 
inquiry likewise relies upon analysis of highly variable tasks within interface. Such efforts can 
provide vital insight. In surface transport research, for example, such efforts have shown the 
driving task to be highly variable in terms of workload, at times complex enough to tax and 
exceed the information processing capacity of the human operator (Senders et al., 1967). Indeed, 
analysis of driving performed concurrently with other tasks has shown evidence that such 
multitasking reduces the overall capacity available to the human operator, hindering their ability 
to respond appropriately (see Strayer, Drews, & Johnston, 2003 and Sawyer et al., 2014 for 
focused examples; see Hancock & Warm, 1982 for underlying theory). Results from this 
literature have been useful in establishing both design guidelines and policy toward safety on the 
road. However, the treatment of a complex task as a single unit limits the granularity of results, 
and so the depth of understanding of such inquiry. For example, task level data allows 
researchers to say that drivers are less likely to appropriately respond while engaging in a 
secondary task, but does little to identify design strategies to improve user interface design to 
mitigate this detriment.  
 
Consider the challenge of comparing competing HMIs toward designing greater on-road safety 
in a given task. To weigh the contribution of each design element, researchers must explore the 
constellation of subtasks within the task. For example, a substantial body of research into driving 
while messaging, either through SMS or digital apps, analyzes epochs of vehicle control or 
attentional correlates. Through this work, the messaging task has been shown to cause detriment 
to control of the vehicle, as well as reduced operator ability to identify emergent threats on the 
roadway (Senders et al., 1967; Strayer, Drews, & Johnston, 2003; Sawyer et al., 2014). However, 
it is certainly the case that “messaging” is not a homogeneous task, and in fact is composed of 
subtasks as diverse as manual haptic button pressing, reading, route planning, and composition of 
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language (Sawyer et al., 2014; Sawyer & Clegg, 2010). How might such complexity be 
unpacked and analyzed? How do we identify major contributors to driving detriment? 
The concept and challenge of identifying the subcomponents of tasks are neither new, nor 
solved. Both have long been addressed by work on keystroke level data (KLM, Card, Moran, & 
Newell, 1980), which includes the supposition that expert user behavior with computer systems 
can be predicted through a combination of modeling low-level operations such as keystrokes and 
heuristic rules for predicting mental effort. Such ideas play an important role in the GOMS 
model (Card, Moran, & Newell, 1983), and the many variants of that theoretical construct that 
have followed its development (for an overview of the family, see John & Kieras, 1996). There 
are, however, no accepted broadly applicable guidelines for the identification of the dividing 
lines between such low-level operations. Conventions for some common, homogeneously 
designed interfaces, such as the computer keyboard, do exist (John & Kieras, 1996). Complex, 
diverse, and so relatively unique interfaces rarely have accepted conventions for identifying low-
level operators. The GOMS family of frameworks in many cases spring from adaptation of an 
existing model to the special cases of the interfaces at hand (see John & Kieras, 1996). More 
special cases mean less ability to generalize, and so recent technological trends toward more 
complex and diverse interface mean logical, universal, and generalizable conventions in 
subdividing tasks have become a more difficult goal.  
 
What is the correct way to identify the low-level subcomponents of a novel task? Certainly, there 
is more than one defensible answer. Efforts to model low-level operators in tasks within 
operationally diverse interface generally involve identifying logical divisions to delineate the 
subtask epochs that constitute that task. What is logical to one practitioner may not be to another, 
and conflicting and yet individually internally consistent subtask structures inevitably exist for 
any given task. While these inconsistent approaches may not be detrimental to any one effort 
considered in isolation, the need to compare efforts from disparate locations and times does exist. 
Many excellent task-analysis efforts are simply not comparable, despite the advantages to 
research, profit margins, and public good that such comparison might generate. 
 
In the hunt for a framework to curry agreement in our own subtask analysis efforts, our team has 
turned for inspiration to a fundamentally human behavior: turn-taking in language. While subject 
to cultural, gender-based, educational, and other variations, such conventions are strikingly 
universal (Sidnell, 2007). Turn-taking is well studied in the linguistic literature, and described by 
theories notably including conversation analysis (Sacks, Schgegloff, & Jefferson, 1974), which 
describes the organization of turn-taking and turn allocation. Of course, discourse between 
operator and system presently lacks the richness and flexibility of human-to-human discourse. 
As such, turn-taking in human machine interaction may be better conceptualized as a limited 
vocabulary of available cues, some available to the human, some to the machine. This highly 
scripted responsive alternation is reminiscent of the scripted, and also scored, call and response 
of choral music, or antiphony. In the present work, we will use the same term to refer to call and 
response turn-taking between operator and human. An antiphony framework for dividing tasks 
into subtasks will be described, and examples provided. 
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The Antiphony Framework 
 

A framework for division of task epochs into subtask epochs must be interpretable by 
practitioners. It must allow individuals separated by time and geography to come to comparable 
conclusions about subtask structure, the subdivision of task epochs into subtask epochs. Our 
antiphony framework must be usable by an increasingly globally diverse practitioner community, 
as turn-taking conventions do vary somewhat by language, among other factors (Sidnell, 2007). 
As such, the present work seeks to establish conventions for identifying the turn-taking in 
human-machine interaction. This antiphony framework will not presently be extended to teams 
of humans, or to groups of systems, although such elaboration is foreseen. Instead, we now focus 
upon the identification of subtask epochs over the course of one interaction (the task epoch) 
based upon identifying the responsive alternation between a single human (the operator) and a 
single interface (the system).  
 
Fundamentally, any antiphony task epoch may be broken down around the stages of a cycle, 
itself composed of 1) operator latency, 2) operator action, 3) system latency, and 4) system 
action. Operator latency refers to delay due to perception, cognitive processing, and decision 
making. Operator action refers to production of any cues which direct the system. System latency 
refers to delay due to processing constraints. System action refers to the production of 
multimodal cues to the operator, or modifications to the environment. As an example, in a task 
broken into subtasks around the antiphony cycle, a driver observing the roadway might perceive 
and upcoming traffic jam and make a decision to make a phone call informing a friend of late 
arrival. This chain of events, from the start point of the observation of the traffic, would consider 
time to take the first action as 1) operator latency. Subsequently speaking out loud the activation 
phrase for a voice-activated phone would be described as 2) operator action. The time from the 
end of the operator’s voice command to an acknowledgment from the system would be described 
as 3) system latency. An acknowledging audio response by the system, would be described as 4) 
system action. Here the onus of interaction would fall again to the human, who after potential 1) 
operator latency would perform an 2) operator action interpreted at the potential cost of 3) 
system latency and followed by a 4) system action. 
 

 
Figure 1. The four-stage antiphony cycle (left), and rules associated with its application to identifying subtask 

epoch divisions (right). Note that latency always precedes action, but may not be externally measurable. 
 
Emergent aspects of this four-stage antiphony cycle (Figure 1) are in need of discussion. First, 
note that as both operators and systems are capable of processing the actions of the other in 
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parallel with the production of those actions, both operator and system latency subtask epochs 
may have a duration of zero. That is to say, for example, that a voice-activated system will begin 
buffering and analyzing voice data as it is spoken. Likewise, a human is well able to process 
many actions of the system without a subsequent pause, or indeed even waiting for their 
completion. Second, inaction is a form of action, and so both operator and system action subtask 
epochs may have a duration of zero. Both operators and systems may forgo available actions, 
either terminating the interaction or leaving the other party with the onus of continued 
interaction. Third, system and operator actions are interruptible, and so seemingly static epoch 
lengths, such as the time for a system to play a message, may be foreshortened. For example, 
operators may interrupt systems in anticipation of their full actions. Likewise, although more 
rarely, systems may interrupt operators, for example to deliver higher priority information or in 
anticipation of failure to correctly classify the operator’s task. Fourth, the cycle may be measured 
from any step, depending upon task characteristics. Tasks are ideally measured using a 
precipitating event as a start point, to determine operator or system latency in response. 
However, while system-initiated tasks often have known start points, the start-points of human-
initiated tasks are far more difficult determine. Specifically, systems can be made transparent, 
while human cognition largely remains a black box. Note, however, that evaluations of non-
transparent interface may render systems similarly opaque in terms of latency, while 
neuroergonomic advances increasingly promise windows into human cognition (Sawyer et al., 
2016). Ultimately, it may be possible to measure the beginning and end of all subtask epochs. 
 
Practical Antiphony Subtask Identification 
 

A practical implementation of an antiphony framework for subtask division of tasks must fulfill 
several important criteria. It must be interpretable by practitioners, straightforward to implement, 
and the result extensible to diverse, and potentially yet unimagined, interface. Here, and in 
support of these goals, we present steps for moving from a task, to understanding of the call and 
response turn-taking within that task, to identifying a list of subtasks. We further present an 
example drawn from AgeLab experiences with a real-world interface: address entry for voice 
navigation in a 2014 Mercedes CLA (Mehler et al., 2015). This interface includes interruptability 
and nonlinearity. It nonetheless can be considered only a moderately complex task in terms of 
difficulty to reduce to subtask epochs. 
 
First, a script for operator-system interaction must be obtained. Specifically, this should be a list 
of 1) all actions the system will take, including error response actions, and 2) all expected actions 
from the operator. Designers of systems should have easy access to information on system 
actions, but those evaluating systems designed by others may need to draw such a script from 
records of user interaction. It is important in this case to use more than one interaction as a 
template, as error handling and nonlinearity within systems can lead to a variety of different 
paths that an operator might take to a goal. Conceptually, this can be considered a list of turns 
that might be taken, with an eye to subdividing at any point where the onus of continuing the 
“conversation” passes from operator to system or vice versa. Note that it is impossible to map all 
unexpected responses from a human operator, but it is presently possible to map all system 
responses. For example, in providing an address a system might have separate error handling for 
an ambiguous street number as compared to an ambiguous city. It is useful to represent such 
nonlinearity in a linear fashion, moving temporally through all the possible interaction paths a 
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user might take, including redundant paths. An example of such a “raw script”, in this case 
drawn from records of user interactions, is presented on the left side of Figure 2. 
 
Second, a basic script of the nuclear components necessary to navigate through the interface to 
the task goal should be constructed. If the task can end in multiple goal types, and such a basic 
script becomes complex and multi-faceted, consider the possibility that it might better be broken 
into two tasks. An example of such a “basic subtask script” is presented at the top right of Figure 
2. It is worth noting that such a script can be the endpoint of the antiphony framework, without 
moving on to the third step suggested here.  
 

 
Figure 2. Starting with raw scripts (1), a basic subtask script (2) has here been identified, and delineates each 
step which must be passed through in order to achieve the goal. This basic subtask script is generated with an 
eye toward the turn-taking between the operator and the system. Optionally, variations in error handling (3) 

can be identified. In example 1, such variations are denoted by parentheses, while in example 3, they have 
been grouped under the basic subtasks from example 2. 

 
Third, and dependent upon research design needs, variations and error handling loops may be 
included as subcomponents of a basic subtask script. This will likely involve a level of 
redundancy, for example if the response “yes” is included in several error handling loops. 
However, if subtasks and variations are dutifully coded, the additional granularity may lead to 
insights that are useful in both the research and design setting. Ultimately, such decisions should 
be based on a cost-benefit analysis. 
 
Toward analysis of subtask level data, and specifically epoch lengths, the above subtask structure 
provides a definition from which to code start and stop times for both operator and system 
actions. These action times are enough to define the entire cycle, as both operator and system 
latency are implicitly defined as the times between, the “gap”. Operator latency is defined as the 
gap before the operator action, while system latency is defined as the gap before system action.  
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Discussion and Next Steps 
 

The antiphony framework, here demonstrated, is based upon call and response turn-taking in 
human-to-human communication and adapted to the uniquely scripted interaction presently seen 
between humans and machines. Although the examples presented here involve voice interface, 
this framework can be used in all manner of multimodal interaction. It is worth noting that the 
present work does not delve deeply into the research design considerations, or coding strategies, 
that one might encounter in inquiry focused on subtask level data. Briefly, and with 
understanding that it should be covered in more depth in future works, we will address each. 
 

The coding of subtask data can be accomplished in a number of ways. Some efforts collect 
timestamps directly from the system being interacted with, a strategy which has been called 
device status reporting (DSR, see Sawyer et al., 2015). While this approach is only available in 
efforts where authorized or unauthorized low-level software and/or hardware access is available 
(as in Sawyer et al., 2014), and requires initial effort, it has the advantage of providing coding of 
subtask epochs in a thereafter largely automatic manner. DSR allows subtask information to be 
gathered alongside other experimental efforts, or potentially while users naturalistically interact 
with the system away from the confines of the laboratory. In situations where low-level access to 
a system is not available, digital recording and subsequent human and/or machine coding 
strategies are available. This approach is more time intensive, and suffers from the entropy that 
human decision-making and response time may inject. Double coding, and use of interrater 
reliability scores is highly advised (as explored in the context of glance coding in Reimer et al., 
2014). Subtask data can, in some cases, involve subsecond epoch lengths, and it is important to 
consider the synchronicity of clocks responsible for coding various aspects of human and 
machine performance (for an expanded discussion, see Sawyer et al., 2015). The granularity 
associated with the present examples may be ill advised in certain projects, and cost-benefit 
analysis is encouraged. Specifically, overall coding time, especially when such coding is being 
done by humans, may be reduced in several ways. First, work may be reduced by half by coding 
only the beginning of operator and system actions, and can be reduced again by half by coding 
the beginning of either operator or system actions. Delineating a difference between operators 
and systems, and between latency and action provides potentially valuable information, both 
from the standpoint of a researcher and a practitioner. That said, using this framework to forgo 
delineating such a difference is also a valid use of the framework. The choice of which divisions 
to code and analyze are left to the judgement of the researcher. 
 

Next steps in this effort will involve tailoring its use among a more diverse field of researchers 
and practitioners, and, if necessary, refining the methods to better achieve the stated goal. It is 
further expected that this antiphony framework can be expanded to multiple operator or multiple 
system scenarios. Such an expansion would be necessary to address the complex emerging 
realities of human-machine teaming (Cuevas et al., 2007; Caldwell, 2005). Finally, there is a 
need for recommendations for automated collection of subtask data through device status 
reporting (DSR), as well as best practices for achieving sub-second accuracy in the absence of 
real-time operating systems (Sawyer et al., 2015). Please, as you use the antiphony framework, 
feel free to reach out to our corresponding author with comments, constructive criticism and 
suggestions. Please share the outcomes of the framework’s application in your own effort. The 
concept and challenge of identifying the subcomponents of tasks is neither new, nor here fully 
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solved, but we do hope that the present work provides a scaffolding to the benefit of those on the 
front lines of subtask analysis. 
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