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Summary: Two methods of time series analysis were applied to naturalistic driving 
data. The SAX method reduces the dimensionality of the data by discretizing and 
quantizing it into distinct symbols. The matrix profile method works on raw data 
and computes a Euclidian distance measure between subsequences of the time 
series. Both methods can be used to search for motifs and discords (anomalies) in 
the data. We discuss the applications of these methods to look for driving patterns 
and show an example of a left turn that was identified using both methods. After 
comparing the methods, the matrix profile was the preferred method. 

 
BACKGROUND 
 
Foundational to many applications of driver modeling and data mining of vehicle data is the 
ability to detect and categorize patterns that appear in the data. It has been shown that driving 
behavior and individual ‘fingerprints’ of driving can be identified with no more than smartphone 
sensors (Enev, Takakuwa, Koscher, & Kohno, 2016). Many opportunities to identify driving 
patterns exist with naturalistic data that captures drivers’ actual day-to-day actions (Jovanis, 
Aguero-Valverde, Wu, & Shankar, 2011). 
 
The modeling of driver impairment has been conducted using not only driver-based sensors (eye 
tracking), but also vehicle-based ones (steering, pedals). This approach has been used at the 
National Advanced Driving Simulator (NADS) by applying machine learning techniques to 
identify driving patterns unique to alcohol (Lee et al., 2010), drowsiness (Brown, Lee, Schwarz, 
Fiorentino, & McDonald, 2014) and distraction (Schwarz, Brown, & Gaspar, 2016). 
 
Unintended Acceleration 
 
Of particular interest in this work is the problem of sudden unintended acceleration (SUA). 
Many such events turn out to be caused by driver pedal errors. A good overview of the history of 
SUA is publicly available in a NHTSA report (Lococo, Staplin, Martell, & Sifrit, 2012). While 
early investigations of pedal errors resulted in the mandating of shift-brake interlocks, the 
problem frustratingly persists today. 
 
A vision analysis of driver foot gestures was used to predict pedal errors (Tran, Doshi, & 
Trivedi, 2011), and this is significant because the data mining approaches discussed herein can 
be applied equally well to many kinds of data, including gestures. Video coding of driver feet 
was also applied in a naturalistic study (McGehee et al., 2014). Yu and Langari developed a 
detection and warning system for SUA by testing thresholds of acceleration and braking given 
the acceleration and speed of the vehicle (Yu & Langari, 2015). 
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Time series data mining 
 
Time series data consist of signals that are (usually) sampled at regular time intervals, and 
include signals such as speed, position and acceleration for driving data. We are often interested 
in asking questions of such data including: are there repetitive patterns in the data (motif 
discovery), are there anomalous patterns in the data (discord discovery), are there patterns that 
are uniquely representative of the data (shapelet discovery), and can the data be separated 
naturally into different regimes (semantic segmentation)? 
 
Symbolic Aggregate Approximation (SAX). The SAX technique is a symbolic representation of a 
time series that codes continuous data into quantized levels and then into discrete symbols, 
usually a subset of the alphabet (Lin, Keogh, Wei, & Lonardi, 2007). This technique has the 
benefit of greatly compressing the original data into a smaller size at the expense of resolution. 
The resulting symbolic data can then be processed by natural language processing (NLP) 
techniques that can identify words and topics. A technique called randomized projections can be 
used to search for motifs in the data (Chiu, Keogh, & Lonardi, 2003). The SAX method has been 
adapted and applied to driving data in recent years in efforts to apply NLP methods (A. 
McDonald et al., 2013; McLaurin et al., 2014). 
 
The Matrix Profile. A more robust approach for mining time series data would not sacrifice its 
resolution by compressing it as SAX does. However, these types of algorithms have been 
plagued by the sheer computational burden of the problem. Running a search that could be used 
to identify motifs in big datasets could take months or more. Recent work on the problem has 
resulted in ultra-fast algorithms that can do just this (Mueen, Hamooni, & Estrada, 2014; 
Rakthanmanon et al., 2013). The matrix profile is a computed data signal in which each sample 
represents the distance of a subsequence to its nearest neighbor. A subsequence length must be 
specified just like with SAX. Distance is computed by some metric, like Euclidian distance. An 
accompanying data signal is also generated, called the profile index. The values in the profile 
index give the index in the dataset of the nearest neighbor whose distance is recorded in the 
matrix profile. 
 
OBJECTIVES 
 
The purpose of this paper is to demonstrate the applications of the SAX and matrix profile 
methods to a naturalistic dataset and identify geo-spatial driving patterns in it. We were 
interested in identifying and classifying driving patterns that typically involve accelerations. 
These include maneuvers like turning, stopping at intersections, parking, and leaving parking 
spaces. It is in these situations where pedal errors are most likely to occur as drivers’ feet move 
from one pedal to the other. If normal driving patterns are well understood, then detecting the 
onset of SUA becomes a matter of detecting anomalies in the driving pattern. This paper 
describes the process of finding motifs, or common patterns, in such data. 
 
METHODS 
 
The data used for this research were collected through a University of Iowa naturalistic driving 
study centered on understanding driver foot pedal behavior. Data were collected from September 
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2013 through August 2014, where data collection systems were installed in owners’ vehicles for 
a period of four weeks. An event recorder was developed for the instrumentation and recorded 
vehicle signals related to position, velocity and acceleration. A total of 34 participants completed 
the study. One third of participants were from the age group of 25-35 years and two thirds were 
over the age of 65 years. The project included video coding of the driver’s feet, looking for pedal 
errors. In addition to video of the driver, forward view, and foot well, other collected data 
included GPS data that was recorded continuously (at 10hz frequency) while the vehicle is being 
operated, accelerometer data, and on-board diagnostics (OBD) data all collected at a 10 Hz 
sampling rate. 
 
Accelerometer Normalization 
 
When the longitudinal acceleration signal was checked against the filtered derivative of the 
speed in the naturalistic dataset, a scale difference was observed. The accelerometer signal was 
consistently smaller in magnitude than its estimate from speed. Then it was observed that a 
significant piece of the acceleration cues was present in the vertical acceleration signal. It is not 
known whether the accelerometer was installed at an angle in the car, or if it was mounted on a 
flexible surface that flexed when the car was under acceleration.  
 
An attempt was made to normalize the longitudinal acceleration signal through a rotational 
transformation. A three-dimensional rotational transformation matrix was constructed by 
multiplying three constituent two-dimensional rotations in a standard Z-Y-X configuration. Let 
Ax denote the roll rotation matrix, Ay the pitch rotation matrix, and Az the yaw rotation matrix. 
Then the final transformation matrix, A, is given by ܣ௭	ܣ௬	ܣ௫. 
 

 
Figure 1. Transformation to normalize acceleration signals 

 
A brute force search was conducted to find the amount of pitch rotation that would minimize the 
2-norm of the vertical acceleration signal. An optimal pitch rotation of -61.8 degrees was 
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obtained for one participant’s complete dataset. The raw and transformed versions of 
longitudinal and vertical acceleration are shown in Figure 1. While the transformed longitudinal 
acceleration does not match the speed derivative perfectly, it is a vast improvement over the raw 
signal. The optimal transformation value must be determined for each vehicle to allow for 
hardware mounting differences. 
 
Speed Normalization 
 
We seek to identify driving patterns in naturalistic data that correspond to maneuvers such as 
turning, slowing, accelerating and parking. However, the time required for all of these 
maneuvers vary significantly depending on how fast the driver is going. For example, a turn 
done at 15 mph will obviously take about twice as long as one done at 30 mph. Moreover, 
drivers will sit at zero speed for widely variable times depending on traffic and signal timing. 
These facts make the identification of consistent patterns quite difficult in the data. 
 
The processing of datasets to put them in a form suitable for time series data mining can 
sometimes take more time than the activity of data mining itself. A technique called Dynamic 
Time Warping (DTW) is popular for matching data segments that have similar shapes but are 
spread out across varying lengths (Rakthanmanon et al., 2013). It allows for data warping to 
bring two segments into alignment and expose their similarity. 
 
Rather than using Dynamic Time Warping, we have adopted a simple speed normalization to 
accomplish much the same purpose. We created the distance signal as the integration of speed 
and then interpolated each signal along a regularly-spaced distance grid, effectively transforming 
the dependent parameter from time to distance. This process can be thought of as a speed 
normalization and frames the data much better into a geo-spatial context. Now all right turns 
look more similar even if the speed varies and even if the driver sits at a light for some 
indeterminate length of time. 
 
Motif Discovery 
 
The lateral and longitudinal acceleration were coded into symbols using the SAX method in a 
sliding window that ran across the dataset one frame at a time. A multidimensional SAX code 
was achieved simply by concatenating the codes for longitudinal and lateral acceleration 
together. The speed normalization was performed and a distance grid with one meter spacing 
was created. A SAX code with six symbols (letters a-f) was used where each letter represented 
the aggregate mean across five meters. Subsequences of 100 meters were used resulting in SAX 
words for lateral and longitudinal acceleration that were 20 symbols long each. Each 
subsequence was normalized by subtracting its mean and dividing by its standard deviation 
before coding. This allows patterns to be detected even if differences in scale and bias exist. The 
method of random projects was implemented to locate motifs. Additionally, the matrix profile 
was used to identify motifs in the data. The method adapted to multidimensional data by adding 
together the distance metric of each data signal before the final generation of the matrix profile. 
A 150 meter subsequence length was used. 
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RESULTS 
 
A SAX motif corresponding to a left turn is shown in Figure 2. The raw acceleration signals are 
shown in the upper right plot while the coded SAX word for the subsequence is given in the 
figure caption. The longitudinal and lateral acceleration words are concatenated to create a 40 
symbol word. The speed profile for this turn is shown in the lower right plot, and the gps position 
trace is shown in the left plot. 
 

 
Figure 2. SAX motif with the code: ccbbbbbbbbaabeffffffcccccccccccdefffcaaa 

 

 
Figure 3. Motif found using the matrix profile 

 
Almost exactly the same motif was obtained using the matrix profile, but with a 150 m 
subsequence length instead of a 100 m length (see Figure 3). One looks for relatively low values 
of the matrix profile, perhaps even local minima, to suggest good candidates for motifs. The 
process of searching for motifs can be completely automated, or it can be supervised with the 
researcher selecting some motifs. 
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It was thought that 150 meters might capture more complete maneuvers, and both choices 
capture several useful motifs. It was observed that instances of the turning motif pictured above 
included not only these well-defined turns, but also much more mild versions of the pattern with 
smaller magnitude accelerations at higher speeds. This happens because of the normalization that 
gets applied to each subsequence. This normalization is necessary in order to capture similar 
shapes that occur at different scales and offsets in the data. One potential way to eliminate the 
high speed instances from the motif would be to include speed as an additional dimension to add 
in the speed profile. Turns have the distinct dip in speed while high speed instances have 
essentially flat speed. Another way would be to simply use minimum speed to break the motif 
into two distinct ones. 
 
CONCLUSION 
 
Two methods of time series data mining, SAX and the matrix profile, were applied to naturalistic 
driving data. The use of longitudinal and lateral acceleration signals was sufficient to detect 
many motifs related to driving maneuvers. The detection of such maneuvers can be used to learn 
typical driving behavior in those maneuvers. Our intent is to then detect when driver behavior in 
a classified maneuver becomes abnormal. 
 
The SAX method has the advantage of significantly compressing down the size of the data, but 
at the expense of resolution. Computing the distance between SAX words only gives an accurate 
lower bound to the Euclidian distance between the subsequences. Implementing the SAX method 
and random projections for motif discovery requires setting many parameters, including the 
number of symbols, the number of samples aggregated into each symbol, and several others. The 
implementation of SAX and random projections in Matlab took a great deal of effort. 
 
The matrix profile method is much more recent than SAX and takes advantage of many advances 
in time series data mining that speed up the algorithms. It does not sacrifice any data resolution 
and still runs as fast, or faster, than SAX in finding motifs. Other than selecting the subsequence 
length, the only other parameter to tune was the threshold on similarity for including a 
subsequence as an instance of a motif. The implementation of matrix profiles is significantly 
shorter and simpler than that of SAX and random projections. The matrix profile method also 
provides a way to compare two different sets of data to look for similarities and differences, 
something that SAX is not able to do. 
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